Skip to content

Latest commit

 

History

History

CLIP

Input

Input

(Image from https://scikit-image.org/)

Output

  • Zero-Shot Prediction
### predicts the most likely top5 labels among input textual labels ###
    a cat: 98.40%
  a human: 1.35%
    a dog: 0.24%

Requirements

This model requires additional module.

pip3 install ftfy

Usage

Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.

For the sample image,

$ python3 clip.py

If you want to specify the input image, put the image path after the --input option.

$ python3 clip.py --input IMAGE_PATH

You can use --text option if you want to specify a subset of the texture labels to input into the model.
Default labels is "a human", "a dog" and "a cat".

$ python3 clip.py --text "a human" --text "a dog" --text "a cat"

If you want to load a subset of the texture labels you input into the model from a file, use the --desc_file option.

$ python3 clip.py --desc_file imagenet_classes.txt

By adding the --model_type option, you can specify model type which is selected from "ViTB32", "RN50". (default is ViTB32)

$ python3 clip.py --model_type ViTB32

Reference

Framework

Pytorch

Model Format

ONNX opset=11

Netron

ViT-B32-encode_image.onnx.prototxt
ViT-B32-encode_text.onnx.prototxt
RN50-encode_image.onnx.prototxt
RN50-encode_text.onnx.prototxt