-
Notifications
You must be signed in to change notification settings - Fork 337
/
Copy pathmmfashion_tryon.py
572 lines (468 loc) · 17.6 KB
/
mmfashion_tryon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
import sys, os
import time
import json
import numpy as np
import cv2
from PIL import Image, ImageDraw
import ailia
# import original modules
sys.path.append('../../util')
from arg_utils import get_base_parser, update_parser, get_savepath # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from detector_utils import load_image # noqa: E402
import webcamera_utils # noqa: E402
# logger
from logging import getLogger # noqa: E402
from mmfashion_tryon_utils import *
from pose_utils import *
from hps_utils import *
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
WEIGHT_GMM_PATH = './GMM_epoch_40.onnx'
MODEL_GMM_PATH = './GMM_epoch_40.onnx.prototxt'
WEIGHT_TOM_PATH = './TOM_epoch_40.onnx'
MODEL_TOM_PATH = './TOM_epoch_40.onnx.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/mmfashion_tryon/'
WEIGHT_YOLOV3_PATH = 'yolov3.opt2.onnx'
MODEL_YOLOV3_PATH = 'yolov3.opt2.onnx.prototxt'
REMOTE_YOLOV3_PATH = 'https://storage.googleapis.com/ailia-models/yolov3/'
WEIGHT_POSE_PATH = 'pose_resnet_50_256x192.onnx'
MODEL_POSE_PATH = 'pose_resnet_50_256x192.onnx.prototxt'
REMOTE_POSE_PATH = 'https://storage.googleapis.com/ailia-models/pose_resnet/'
WEIGHT_SEG_PATH = 'resnet-lip.onnx'
MODEL_SEG_PATH = 'resnet-lip.onnx.prototxt'
REMOTE_SEG_PATH = 'https://storage.googleapis.com/ailia-models/human_part_segmentation/'
IMAGE_CLOTH_PATH = 'cloth/019029_1.jpg'
IMAGE_PERSON_PATH = 'image/000320_0.jpg'
SAVE_IMAGE_PATH = 'output.png'
IMAGE_HEIGHT = 256
IMAGE_WIDTH = 192
IMAGE_POSE_HEIGTH = 256
IMAGE_POSE_WIDTH = 192
IMAGE_LIP_SIZE = 473
LIP_NORM_MEAN = [0.406, 0.456, 0.485]
LIP_NORM_STD = [0.225, 0.224, 0.229]
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser('MMFashion Virtual Try-on model', IMAGE_CLOTH_PATH, SAVE_IMAGE_PATH)
parser.add_argument(
'-p', '--person', metavar='PERSON_IMAGE', default=IMAGE_PERSON_PATH,
help='Image of person.'
)
parser.add_argument(
'-pp', '--parse', metavar='PARSE_IMAGE/DIR', default=None,
help='Parsed image of person image. If a directory name is specified, '
'Search for a png file with the same name as the person image file'
)
parser.add_argument(
'-k', '--keypoints', metavar='KEYPOINT_FILE/DIR', default=None,
help='Keypoints json file. If a directory name is specified, '
'find a json file with the same name as the person image file'
)
parser.add_argument(
'--onnx',
action='store_true',
help='execute onnxruntime version.'
)
args_input = parser.parse_args().input
args = update_parser(parser)
# ======================
# Secondaty Functions
# ======================
def preprocess(img):
mean = np.array((0.5,) * img.shape[2])
std = np.array((0.5,) * img.shape[2])
img = img / 255
img = (img - mean) / std
img = img.transpose(2, 0, 1) # HWC -> CHW
return img.astype(np.float32)
def post_processing(data):
data = (data + 1) * 0.5 * 255
data = np.clip(data, 0, 255)
data = data.transpose(1, 2, 0) # CHW -> HWC
img = data.astype(np.uint8)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
return img
def human_detect(det_net, img):
h, w = img.shape[:2]
THRESHOLD = 0.4
IOU = 0.45
CATEGORY_PERSON = 0
# detect bbox
det_net.compute(img, THRESHOLD, IOU)
count = det_net.get_object_count()
a = sorted([
det_net.get_object(i) for i in range(count)
], key=lambda x: x.prob, reverse=True)
bbox = [
(w * obj.x, h * obj.y, w * obj.w, h * obj.h)
for obj in a if obj.category == CATEGORY_PERSON
]
if 0 < len(bbox):
bbox = bbox[0]
else:
return img, (0, 0), (1, 1)
# adjust bbox
x0 = bbox[0]
y0 = bbox[1]
x1 = bbox[0] + bbox[2]
y1 = bbox[0] + bbox[3]
x0, y0, x1, y1 = keep_aspect(
x0, y0, x1, y1, h, w, IMAGE_POSE_HEIGTH / IMAGE_POSE_WIDTH
)
img = img[y0:y1, x0:x1, :]
offset_x = x0 / w
offset_y = y0 / h
scale_x = img.shape[1] / w
scale_y = img.shape[0] / h
return img, (offset_x, offset_y), (scale_x, scale_y)
def pose_estimation(pose_net, img):
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
img = cv2.resize(img, (IMAGE_POSE_WIDTH, IMAGE_POSE_HEIGTH))
# BGR format
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
img = (img / 255.0 - mean) / std
img = img.transpose(2, 0, 1) # HWC -> CHW
img = np.expand_dims(img, axis=0)
output = pose_net.predict(img)
center = np.array([IMAGE_POSE_WIDTH / 2, IMAGE_POSE_HEIGTH / 2], dtype=np.float32)
scale = np.array([1, 1], dtype=np.float32)
preds, maxvals = get_final_preds(output, [center], [scale])
ailia_to_mpi = [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, -1, -1
]
pose = []
for j in range(ailia.POSE_KEYPOINT_CNT):
i = ailia_to_mpi[j]
if j == ailia.POSE_KEYPOINT_BODY_CENTER:
x = (preds[0, ailia_to_mpi[ailia.POSE_KEYPOINT_SHOULDER_LEFT], 0] +
preds[0, ailia_to_mpi[ailia.POSE_KEYPOINT_SHOULDER_RIGHT], 0] +
preds[0, ailia_to_mpi[ailia.POSE_KEYPOINT_HIP_LEFT], 0] +
preds[0, ailia_to_mpi[ailia.POSE_KEYPOINT_HIP_RIGHT], 0]) / 4
y = (preds[0, ailia_to_mpi[ailia.POSE_KEYPOINT_SHOULDER_LEFT], 1] +
preds[0, ailia_to_mpi[ailia.POSE_KEYPOINT_SHOULDER_RIGHT], 1] +
preds[0, ailia_to_mpi[ailia.POSE_KEYPOINT_HIP_LEFT], 1] +
preds[0, ailia_to_mpi[ailia.POSE_KEYPOINT_HIP_RIGHT], 1]) / 4
elif j == ailia.POSE_KEYPOINT_SHOULDER_CENTER:
x = (preds[0, ailia_to_mpi[ailia.POSE_KEYPOINT_SHOULDER_LEFT], 0] +
preds[0, ailia_to_mpi[ailia.POSE_KEYPOINT_SHOULDER_RIGHT], 0]) / 2
y = (preds[0, ailia_to_mpi[ailia.POSE_KEYPOINT_SHOULDER_LEFT], 1] +
preds[0, ailia_to_mpi[ailia.POSE_KEYPOINT_SHOULDER_RIGHT], 1]) / 2
else:
x = preds[0, i, 0]
y = preds[0, i, 1]
pose.append([
x / IMAGE_POSE_WIDTH,
y / IMAGE_POSE_HEIGTH,
0
])
pose = np.array([
pose[0], # NOSE
pose[17], # SHOULDER_CENTER
pose[6], # SHOULDER_RIGHT
pose[8], # ELBOW_RIGHT
pose[10], # WRIST_RIGHT
pose[5], # SHOULDER_LEFT
pose[7], # ELBOW_LEFT
pose[9], # WRIST_LEFT
pose[12], # HIP_RIGHT
# pose[14], # KNEE_RIGHT
# pose[16], # ANKLE_RIGHT
[0, 0, 0],
[0, 0, 0],
pose[11], # HIP_LEFT
# pose[13], # KNEE_LEFT
# pose[15], # ANKLE_LEFT
[0, 0, 0],
[0, 0, 0],
pose[2], # EYE_RIGHT
pose[1], # EYE_LEFT
pose[4], # EAR_RIGHT
pose[3], # EAR_LEFT
])
return pose
def human_seg(seg_net, img):
h, w, _ = img.shape
img_size = (IMAGE_LIP_SIZE, IMAGE_LIP_SIZE)
# Get person center and scale
center, s = xywh2cs(0, 0, w - 1, h - 1)
r = 0
trans = get_affine_transform(
center, s, r, img_size
)
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
img = cv2.warpAffine(
img,
trans,
(img_size[1], img_size[0]),
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,
borderValue=(0, 0, 0))
# normalize
img = ((img / 255.0 - LIP_NORM_MEAN) / LIP_NORM_STD).astype(np.float32)
img = img.transpose(2, 0, 1)
img = np.expand_dims(img, 0)
# feedforward
output = seg_net.predict([img])
_, fusion, _ = output
fusion = fusion[0].transpose(1, 2, 0)
upsample_output = cv2.resize(
fusion, img_size, interpolation=cv2.INTER_LINEAR
)
parse = transform_logits(
upsample_output,
center, s, w, h,
input_size=img_size
)
parse = np.argmax(parse, axis=2)
return parse
# ======================
# Main functions
# ======================
def cloth_agnostic(pose_net, seg_net, img):
fine_height = IMAGE_HEIGHT
fine_width = IMAGE_WIDTH
radius = 5
person_path = args.person
name = os.path.splitext(os.path.basename(person_path))[0]
img = cv2.resize(
img, (fine_width, fine_height), interpolation=cv2.INTER_LINEAR
)
if pose_net:
pose_data = pose_estimation(pose_net, img)
pose_data = pose_data * [fine_width, fine_height, 1]
else:
pose_path = (os.path.join(args.keypoints, '%s_keypoints.json' % name) \
if os.path.isdir(args.keypoints) else args.keypoints) \
if args.keypoints else '%s_keypoints.json' % name
# load pose points
with open(pose_path, 'r') as f:
pose_label = json.load(f)
pose_data = pose_label['people'][0]['pose_keypoints']
pose_data = np.array(pose_data)
pose_data = pose_data.reshape((-1, 3))
if seg_net:
im_parse = human_seg(seg_net, img)
head_ids = [1, 2, 4, 13]
else:
parse_path = (os.path.join(args.parse, '%s.png' % name) \
if os.path.isdir(args.parse) else args.parse) \
if args.parse else '%s_parse.png' % name
im_parse = np.array(Image.open(parse_path))
head_ids = [1, 2, 4, 13]
# person image
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
img = preprocess(img)
# parsing image
parse_shape = (im_parse > 0).astype(np.float32)
phead = sum([
(im_parse == i).astype(np.float32) for i in head_ids
])
# shape downsample
parse_shape = (parse_shape * 255).astype(np.uint8)
parse_shape = Image.fromarray(parse_shape)
parse_shape = parse_shape.resize(
(fine_width // 16, fine_height // 16), Image.BILINEAR)
parse_shape = parse_shape.resize(
(fine_width, fine_height), Image.BILINEAR)
parse_shape = np.expand_dims(np.asarray(parse_shape), axis=2)
shape = preprocess(parse_shape)
# upper cloth
im_h = img * phead - (1 - phead) # [-1,1], fill 0 for other parts
point_num = pose_data.shape[0]
pose_map = np.zeros((point_num, fine_height, fine_width), dtype=np.float32)
r = radius
im_pose = Image.new('L', (fine_width, fine_height))
pose_draw = ImageDraw.Draw(im_pose)
for i in range(point_num):
one_map = Image.new('L', (fine_width, fine_height))
draw = ImageDraw.Draw(one_map)
pointx = pose_data[i, 0]
pointy = pose_data[i, 1]
if pointx > 1 and pointy > 1:
draw.rectangle(
(pointx - r, pointy - r, pointx + r, pointy + r), 'white',
'white')
pose_draw.rectangle(
(pointx - r, pointy - r, pointx + r, pointy + r), 'white',
'white')
one_map = np.expand_dims(np.asarray(one_map), axis=2)
one_map = preprocess(one_map)
pose_map[i] = one_map[0]
agnostic = np.vstack([shape, im_h, pose_map])
return agnostic
def predict(GMM_net, TOM_net, cloth, agnostic):
if not args.onnx:
output = GMM_net.predict({
'cloth': cloth, 'agnostic': agnostic
})
else:
in0 = GMM_net.get_inputs()[0].name
in1 = GMM_net.get_inputs()[1].name
out0 = GMM_net.get_outputs()[0].name
output = GMM_net.run(
[out0],
{in0: cloth, in1: agnostic})
grid = output[0]
warped_cloth = grid_sample(cloth, grid, padding_mode='border')
if not args.onnx:
output = TOM_net.predict({
'cloth': warped_cloth, 'agnostic': agnostic
})
else:
in0 = TOM_net.get_inputs()[0].name
in1 = TOM_net.get_inputs()[1].name
out0 = TOM_net.get_outputs()[0].name
output = TOM_net.run(
[out0],
{in0: warped_cloth, in1: agnostic})
tryon = output[0]
return tryon, warped_cloth
def recognize_from_image(GMM_net, TOM_net, det_net, pose_net, seg_net):
img = load_image(args.person)
if det_net:
img, offset, scale = human_detect(det_net, img)
agnostic = cloth_agnostic(pose_net, seg_net, img)
agnostic = np.expand_dims(agnostic, axis=0)
# input image loop
for image_path in args.input:
logger.info(image_path)
# prepare cloth image
img = load_image(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
img = cv2.resize(
img, (IMAGE_WIDTH, IMAGE_HEIGHT), interpolation=cv2.INTER_LINEAR
)
img = preprocess(img)
img = np.expand_dims(img, axis=0)
logger.debug(f'input image shape: {img.shape}')
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
total_time = 0
for i in range(args.benchmark_count):
start = int(round(time.time() * 1000))
output = predict(GMM_net, TOM_net, img, agnostic)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
if i != 0:
total_time = total_time + (end - start)
logger.info(f'\taverage time {total_time / (args.benchmark_count - 1)} ms')
else:
output = predict(GMM_net, TOM_net, img, agnostic)
tryon, warped_cloth = output
tryon = post_processing(tryon[0])
warped_cloth = post_processing(warped_cloth[0])
savepath = get_savepath(args.savepath, image_path, ext='.png')
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, tryon)
savepath_warp = '%s-warp-cloth%s' % os.path.splitext(savepath)
logger.info(f'saved at : {savepath_warp}')
cv2.imwrite(savepath_warp, warped_cloth)
logger.info('Script finished successfully.')
def recognize_from_video(GMM_net, TOM_net, det_net, pose_net, seg_net):
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
writer = webcamera_utils.get_writer(args.savepath, f_h, f_w)
else:
writer = None
# prepare cloth image
if type(args_input) == list:
image_path = args_input[0]
else:
image_path = args_input
img = load_image(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
img = cv2.resize(
img, (IMAGE_WIDTH, IMAGE_HEIGHT), interpolation=cv2.INTER_LINEAR
)
img = preprocess(img)
cloth_img = np.expand_dims(img, axis=0)
dummy = np.zeros(IMAGE_HEIGHT * IMAGE_WIDTH).reshape(IMAGE_HEIGHT, IMAGE_WIDTH)
frame_shown = False
while (True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
# inference
img = cv2.cvtColor(frame, cv2.COLOR_BGR2BGRA)
img, offset, scale = human_detect(det_net, img)
if offset == (0, 0):
# human is not detected
cv2.imshow('frame', dummy)
frame_shown = True
continue
agnostic = cloth_agnostic(pose_net, seg_net, img)
agnostic = np.expand_dims(agnostic, axis=0)
output = predict(GMM_net, TOM_net, cloth_img, agnostic)
tryon, _ = output
tryon = post_processing(tryon[0])
cv2.imshow('frame', tryon)
frame_shown = True
# save results
if writer is not None:
writer.write(frame)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
logger.info('=== GMM model ===')
check_and_download_models(WEIGHT_GMM_PATH, MODEL_GMM_PATH, REMOTE_PATH)
logger.info('=== TOM model ===')
check_and_download_models(WEIGHT_TOM_PATH, MODEL_TOM_PATH, REMOTE_PATH)
if args.video or not args.keypoints:
logger.info('=== detector model ===')
check_and_download_models(WEIGHT_YOLOV3_PATH, MODEL_YOLOV3_PATH, REMOTE_YOLOV3_PATH)
logger.info('=== pose model ===')
check_and_download_models(WEIGHT_POSE_PATH, MODEL_POSE_PATH, REMOTE_POSE_PATH)
if args.video or not args.parse:
logger.info('=== human segmentation model ===')
check_and_download_models(WEIGHT_SEG_PATH, MODEL_SEG_PATH, REMOTE_SEG_PATH)
# initialize
if args.onnx:
import onnxruntime
GMM_net = onnxruntime.InferenceSession(WEIGHT_GMM_PATH)
TOM_net = onnxruntime.InferenceSession(WEIGHT_TOM_PATH)
else:
GMM_net = ailia.Net(MODEL_GMM_PATH, WEIGHT_GMM_PATH, env_id=args.env_id)
TOM_net = ailia.Net(MODEL_TOM_PATH, WEIGHT_TOM_PATH, env_id=args.env_id)
if args.video or not args.keypoints:
det_net = ailia.Detector(
MODEL_YOLOV3_PATH,
WEIGHT_YOLOV3_PATH,
80,
format=ailia.NETWORK_IMAGE_FORMAT_RGB,
channel=ailia.NETWORK_IMAGE_CHANNEL_FIRST,
range=ailia.NETWORK_IMAGE_RANGE_U_FP32,
algorithm=ailia.DETECTOR_ALGORITHM_YOLOV3,
env_id=args.env_id,
)
pose_net = ailia.Net(
MODEL_POSE_PATH, WEIGHT_POSE_PATH, env_id=args.env_id)
else:
det_net = pose_net = None
if args.video or not args.parse:
seg_net = ailia.Net(MODEL_SEG_PATH, WEIGHT_SEG_PATH, env_id=args.env_id)
else:
seg_net = None
if args.video is not None:
# video mode
recognize_from_video(GMM_net, TOM_net, det_net, pose_net, seg_net)
else:
# image mode
recognize_from_image(GMM_net, TOM_net, det_net, pose_net, seg_net)
if __name__ == '__main__':
main()