-
Notifications
You must be signed in to change notification settings - Fork 337
/
Copy pathpyannote-audio.py
173 lines (150 loc) · 5.68 KB
/
pyannote-audio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import yaml
import sys
import matplotlib.pyplot as plt
from pyannote_audio_utils.audio.pipelines.speaker_diarization import SpeakerDiarization
from pyannote_audio_utils.core import Segment, Annotation
from pyannote_audio_utils.core.notebook import Notebook
from pyannote_audio_utils.database.util import load_rttm
from pyannote_audio_utils.metrics.diarization import DiarizationErrorRate
sys.path.append('../../util')
from arg_utils import get_base_parser, update_parser # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from logging import getLogger # noqa: E402
logger = getLogger(__name__)
WEIGHT_SEGMENTATION_PATH = 'segmentation.onnx'
MODEL_SEGMENTATION_PATH = 'segmentation.onnx.prototxt'
WEIGHT_EMBEDDING_PATH = 'speaker-embedding.onnx'
MODEL_EMBEDDING_PATH = 'speaker-embedding.onnx.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/pyannote-audio/'
YAML_PATH = 'config.yaml'
OUT_PATH = 'output.png'
parser = get_base_parser(
'Pyannote-audio', './data/sample.wav', None, input_ftype='audio'
)
parser.add_argument(
'--num', '-num_speaker', default=0, type=int,
help='If the number of speakers is fixed',
)
parser.add_argument(
'--max', '-max_speaker', default=0, type=int,
help='If the maximum number of speakers is fixed',
)
parser.add_argument(
'--min', '-min_speaker', default=0, type=int,
help='If the minimum number of speakers is fixed',
)
parser.add_argument(
'--ig', '-ground', default=None,
help='Specify a wav file as ground truth. If you need diarization error rate, you need this file'
)
parser.add_argument(
'--o', '-output', default='output.png',
help='Specify an output file'
)
parser.add_argument(
'--og', '-output_ground', default='output_ground.png',
help='Specify an output ground truth file'
)
parser.add_argument(
'--e', '-error',
action='store_true',
help='If you need diarization error rate'
)
parser.add_argument(
'--plt',
action='store_true',
help='If you want to visualize result'
)
parser.add_argument(
'--embed',
action='store_true',
help='If you need embedding vector',
)
parser.add_argument(
'--onnx',
action='store_true',
help='execute onnxruntime version'
)
args = update_parser(parser)
def repr_annotation(args, annotation: Annotation, notebook:Notebook, ground:bool = False):
"""Get `png` data for `annotation`"""
figsize = plt.rcParams["figure.figsize"]
plt.rcParams["figure.figsize"] = (notebook.width, 2)
fig, ax = plt.subplots()
notebook.plot_annotation(annotation, ax=ax)
if ground:
plt.savefig(args.og)
else:
plt.savefig(args.o)
plt.close(fig)
plt.rcParams["figure.figsize"] = figsize
return
def main(args):
check_and_download_models(WEIGHT_SEGMENTATION_PATH, MODEL_SEGMENTATION_PATH, remote_path=REMOTE_PATH)
check_and_download_models(WEIGHT_EMBEDDING_PATH, MODEL_EMBEDDING_PATH, remote_path=REMOTE_PATH)
with open(YAML_PATH, 'r') as yml:
config = yaml.safe_load(yml)
config["pipeline"]["params"]["segmentation"] = WEIGHT_SEGMENTATION_PATH
config["pipeline"]["params"]["embedding"] = WEIGHT_EMBEDDING_PATH
with open(YAML_PATH, 'w') as f:
yaml.dump(config, f)
audio_file = args.input[0]
checkpoint_path = YAML_PATH
config_yml = checkpoint_path
with open(config_yml, "r") as fp:
config = yaml.load(fp, Loader=yaml.SafeLoader)
params = config["pipeline"].get("params", {})
pipeline = SpeakerDiarization(
**params,
args=args,
seg_path=MODEL_SEGMENTATION_PATH,
emb_path=MODEL_EMBEDDING_PATH,
)
if "params" in config:
pipeline.instantiate(config["params"])
if args.embed:
if args.num > 0:
diarization, embeddings = pipeline(audio_file, return_embeddings=True, num_speakers=args.num)
for s, speaker in enumerate(diarization.labels()):
print(speaker, embeddings[s].shape)
elif args.max > 0 or args.min > 0:
diarization, embeddings = pipeline(audio_file, return_embeddings=True, min_speakers=args.min, max_speaker=args.max)
for s, speaker in enumerate(diarization.labels()):
print(speaker, embeddings[s].shape)
else:
diarization, embeddings = pipeline(audio_file, return_embeddings=True)
for s, speaker in enumerate(diarization.labels()):
print(speaker, embeddings[s].shape)
else:
if args.num > 0:
diarization = pipeline(audio_file, num_speakers=args.num)
elif args.max > 0 or args.min > 0:
diarization = pipeline(audio_file, min_speakers=args.min, max_speaker=args.max)
else:
diarization = pipeline(audio_file)
if args.ig:
_, groundtruth = load_rttm(args.ig).popitem()
metric = DiarizationErrorRate()
result = metric(groundtruth, diarization, detailed=False)
mapping = metric.optimal_mapping(groundtruth, diarization)
diarization = diarization.rename_labels(mapping=mapping)
print(diarization)
if args.e:
print(f'diarization error rate = {100 * result:.1f}%')
if args.plt:
EXCERPT = Segment(0, 30)
notebook = Notebook()
notebook.crop = EXCERPT
repr_annotation(args, diarization, notebook)
repr_annotation(args, groundtruth, notebook, ground=True)
return
else:
print(diarization)
if args.plt:
EXCERPT = Segment(0, 30)
notebook = Notebook()
notebook.crop = EXCERPT
repr_annotation(args, diarization, notebook)
return
if __name__ == "__main__":
main(args)