-
Notifications
You must be signed in to change notification settings - Fork 337
/
Copy pathmsclap.py
270 lines (221 loc) · 9 KB
/
msclap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import sys
import time
from logging import getLogger
import json
import random
import librosa
import numpy as np
import ailia
# import original modules
sys.path.append('../../util')
from arg_utils import get_base_parser, update_parser, get_savepath # noqa
from model_utils import check_and_download_models # noqa
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
CAPTION_WEIGHT_PATH_2023 = 'msclap_2023_caption.onnx'
AUDIO_WEIGHT_PATH_2023 = 'msclap_2023_audio.onnx'
CAPTION_MODEL_PATH_2023 = 'msclap_2023_caption.onnx.prototxt'
AUDIO_MODEL_PATH_2023 = 'msclap_2023_audio.onnx.prototxt'
CAPTION_WEIGHT_PATH_2022 = 'msclap_2022_caption.onnx'
AUDIO_WEIGHT_PATH_2022 = 'msclap_2022_audio.onnx'
CAPTION_MODEL_PATH_2022 = 'msclap_2022_caption.onnx.prototxt'
AUDIO_MODEL_PATH_2022 = 'msclap_2022_audio.onnx.prototxt'
REMOTE_PATH = "https://storage.googleapis.com/ailia-models/msclap/"
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'msclap', None, None
)
parser.add_argument(
"-a", "--audio", type=str,
default="input.wav",
help="Input audio file path."
)
parser.add_argument(
"-t", "--text", type=str,
default="captions.txt",
help="Input text caption file path"
)
parser.add_argument(
"-v", "--version", type=str,
default="2023",
help="Version of the CLAP model (2022 or 2023)."
)
parser.add_argument(
'-w', '--write_json',
action='store_true',
help='Flag to output results to json file.'
)
parser.add_argument(
'--disable_ailia_tokenizer',
action='store_true',
help='disable ailia tokenizer.'
)
args = update_parser(parser, check_input_type=False)
# ======================
# Helper functions
# ======================
def read_audio(audio_path):
r"""Loads audio file or array and returns a numpy tensor"""
# Randomly sample a segment of audio_duration from the clip or pad to match duration
audio_time_series, sample_rate = librosa.load(audio_path, sr=None)
return audio_time_series, sample_rate
def resample_audio(audio_time_series, sample_rate, resample_rate):
resample_rate = 44100
if resample_rate != sample_rate:
audio_time_series = librosa.resample(
audio_time_series,
orig_sr=sample_rate,
target_sr=resample_rate,
res_type = 'sinc_best'
)
return audio_time_series, resample_rate
def resize_audio(audio_time_series, sample_rate, audio_duration, resample=False):
r"""Loads audio file and returns raw audio."""
# Randomly sample a segment of audio_duration from the clip or pad to match duration
audio_time_series = audio_time_series.reshape(-1)
# audio_time_series is shorter than predefined audio duration,
# so audio_time_series is extended
if audio_duration*sample_rate >= audio_time_series.shape[0]:
repeat_factor = int(np.ceil((audio_duration*sample_rate) /
audio_time_series.shape[0]))
# Repeat audio_time_series by repeat_factor to match audio_duration
audio_time_series = np.tile(audio_time_series,repeat_factor)
# remove excess part of audio_time_series
audio_time_series = audio_time_series[0:audio_duration*sample_rate]
else:
# audio_time_series is longer than predefined audio duration,
# so audio_time_series is trimmed
start_index = random.randrange(
audio_time_series.shape[0] - audio_duration*sample_rate)
audio_time_series = audio_time_series[start_index:start_index +
audio_duration*sample_rate]
return audio_time_series
def get_audio_embeddings(wav_input, sample_rate, model, version="2023"):
if version in ('2023', '2022'):
wav_input = resample_audio(wav_input, sample_rate, 44100)[0]
wav_input = resize_audio(wav_input, 44100, 7)[None]
return model['audio_model'].predict(wav_input)
def get_caption_embeddings(text_input, model, version="2023"):
# preprocesing
if version == '2023':
text_input = [t + ' <|endoftext|>' for t in text_input]
tokenized = dict(model['tokenizer'](text_input, padding = True, return_tensors = 'np'))
# inference
model_input = (tokenized['input_ids'], tokenized['attention_mask'])
return model['caption_model'].predict(model_input)[0]
def cossim(v1, v2):
return np.sum(v1 * v2, axis = -1) / (np.sum(v1 ** 2, axis = -1) ** 0.5 * np.sum(v2 ** 2, axis = -1) ** 0.5)
def print_sorted_dict(d):
m_len = max([len(k) for k in d.keys()])
for k, v in sorted(d.items(), key=lambda x: x[1], reverse=True):
pad = ' ' * (m_len - len(k) + 4)
print(f'{pad + k}: {v}')
def save_sorted_dict_as_json(d):
m_len = max([len(k) for k in d.keys()])
result = []
for k, v in sorted(d.items(), key=lambda x: x[1], reverse=True):
result.append({"caption": k, "similarity": float(v)})
with open('output.json', 'w', encoding='utf-8') as f:
json.dump(result, f, indent=2)
# ======================
# Main functions
# ======================
def inference(model, input_text, input_wav, sample_rate, version):
# get embeddings
audio_embeddings = get_audio_embeddings(input_wav, sample_rate, model, version)
caption_embeddings = get_caption_embeddings(input_text, model, version)
return cossim(audio_embeddings, caption_embeddings)
def estimate_best_caption(model):
# load inputs
#input_text = CAPTIONS
with open(args.text, 'r') as f:
input_text = f.read().splitlines()
#input_text = args.input.split('.')
input_wav, sample_rate = read_audio(args.audio)
input_wav = input_wav[None]
logger.info("input_text: %s" % input_text)
# inference
logger.info('inference has started...')
if args.benchmark:
logger.info('BENCHMARK mode')
total_time_estimation = 0
for i in range(args.benchmark_count):
start = int(round(time.time() * 1000))
output = inference(model, input_text, input_wav, sample_rate, args.version)
end = int(round(time.time() * 1000))
estimation_time = (end - start)
# Logging
logger.info(f'\tailia processing estimation time {estimation_time} ms')
if i != 0:
total_time_estimation = total_time_estimation + estimation_time
logger.info(f'\taverage time estimation {total_time_estimation / (args.benchmark_count - 1)} ms')
else:
output = inference(model, input_text, input_wav, sample_rate, args.version)
print(f"Similarity: ")
print_sorted_dict(dict(zip(input_text, output)))
if args.write_json:
save_sorted_dict_as_json(dict(zip(input_text, output)))
logger.info('Script finished successfully.')
def main():
# model files check and download
if args.version == '2023':
check_and_download_models(
CAPTION_WEIGHT_PATH_2023,
CAPTION_MODEL_PATH_2023,
REMOTE_PATH
)
check_and_download_models(
AUDIO_WEIGHT_PATH_2023,
AUDIO_MODEL_PATH_2023,
REMOTE_PATH
)
elif args.version == '2022':
check_and_download_models(
CAPTION_WEIGHT_PATH_2022,
CAPTION_MODEL_PATH_2022,
REMOTE_PATH
)
check_and_download_models(
AUDIO_WEIGHT_PATH_2022,
AUDIO_MODEL_PATH_2022,
REMOTE_PATH
)
env_id = args.env_id
# disable FP16
if "FP16" in ailia.get_environment(args.env_id).props or sys.platform == 'Darwin':
logger.warning('This model do not work on FP16. So use CPU mode.')
env_id = 0
# initialize
if args.version == '2023':
caption_model = ailia.Net(CAPTION_MODEL_PATH_2023, CAPTION_WEIGHT_PATH_2023, env_id=env_id)
audio_model = ailia.Net(AUDIO_MODEL_PATH_2023, AUDIO_WEIGHT_PATH_2023, env_id=env_id)
if args.disable_ailia_tokenizer:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('gpt2')
tokenizer.add_special_tokens({'pad_token': '!'})
else:
from ailia_tokenizer import GPT2Tokenizer
tokenizer = GPT2Tokenizer.from_pretrained('./tokenizer_gpt2/')
tokenizer.add_special_tokens({'pad_token': '!'})
#tokenizer._pad_token_id = 0
elif args.version == '2022':
caption_model = ailia.Net(CAPTION_MODEL_PATH_2022, CAPTION_WEIGHT_PATH_2022, env_id=env_id)
audio_model = ailia.Net(AUDIO_MODEL_PATH_2022, AUDIO_WEIGHT_PATH_2022, env_id=env_id)
if args.disable_ailia_tokenizer:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
else:
from ailia_tokenizer import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('./tokenizer_bert/')
model = {
'caption_model':caption_model,
'audio_model':audio_model,
'tokenizer':tokenizer
}
estimate_best_caption(model)
if __name__ == '__main__':
main()