-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdnn_models.py
474 lines (344 loc) · 14.8 KB
/
dnn_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
'''
This file contains the implementation of SincNet, by Mirco Ravanelli and Yoshua Bengio
Circular padding has been added before each convolution.
Source: https://github.com/mravanelli/SincNet
'''
import numpy as np
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.autograd import Variable
import math
from torch_same_pad import get_pad
def flip(x, dim):
xsize = x.size()
dim = x.dim() + dim if dim < 0 else dim
x = x.contiguous()
x = x.view(-1, *xsize[dim:])
x = x.view(x.size(0), x.size(1), -1)[:, getattr(torch.arange(x.size(1)-1,
-1, -1), ('cpu', 'cuda')[x.is_cuda])().long(), :]
return x.view(xsize)
def sinc(band, t_right):
y_right = torch.sin(2*math.pi*band*t_right)/(2*math.pi*band*t_right)
y_left = flip(y_right, 0)
y = torch.cat([y_left, Variable(torch.ones(1)).cuda(), y_right])
return y
class SincConv_fast(nn.Module):
"""Sinc-based convolution
Parameters
----------
in_channels : `int`
Number of input channels. Must be 1.
out_channels : `int`
Number of filters.
kernel_size : `int`
Filter length.
sample_rate : `int`, optional
Sample rate. Defaults to 16000.
Usage
-----
See `torch.nn.Conv1d`
Reference
---------
Mirco Ravanelli, Yoshua Bengio,
"Speaker Recognition from raw waveform with SincNet".
https://arxiv.org/abs/1808.00158
"""
@staticmethod
def to_mel(hz):
return 2595 * np.log10(1 + hz / 700)
@staticmethod
def to_hz(mel):
return 700 * (10 ** (mel / 2595) - 1)
def __init__(self, out_channels, kernel_size, sample_rate=16000, in_channels=1,
stride=1, padding=0, dilation=1, bias=False, groups=1, min_low_hz=50, min_band_hz=50):
super(SincConv_fast, self).__init__()
if in_channels != 1:
#msg = (f'SincConv only support one input channel '
# f'(here, in_channels = {in_channels:d}).')
msg = "SincConv only support one input channel (here, in_channels = {%i})" % (
in_channels)
raise ValueError(msg)
self.out_channels = out_channels
self.kernel_size = kernel_size
# Forcing the filters to be odd (i.e, perfectly symmetrics)
if kernel_size % 2 == 0:
self.kernel_size = self.kernel_size+1
self.stride = stride
self.padding = padding
self.dilation = dilation
if bias:
raise ValueError('SincConv does not support bias.')
if groups > 1:
raise ValueError('SincConv does not support groups.')
self.sample_rate = sample_rate
self.min_low_hz = min_low_hz
self.min_band_hz = min_band_hz
# initialize filterbanks such that they are equally spaced in Mel scale
low_hz = 30
high_hz = self.sample_rate / 2 - (self.min_low_hz + self.min_band_hz)
mel = np.linspace(self.to_mel(low_hz),
self.to_mel(high_hz),
self.out_channels + 1)
hz = self.to_hz(mel)
# filter lower frequency (out_channels, 1)
self.low_hz_ = nn.Parameter(torch.Tensor(hz[:-1]).view(-1, 1))
# filter frequency band (out_channels, 1)
self.band_hz_ = nn.Parameter(torch.Tensor(np.diff(hz)).view(-1, 1))
# Hamming window
#self.window_ = torch.hamming_window(self.kernel_size)
# computing only half of the window
n_lin = torch.linspace(0, (self.kernel_size/2)-1,
steps=int((self.kernel_size/2)))
self.window_ = 0.54-0.46*torch.cos(2*math.pi*n_lin/self.kernel_size)
# (1, kernel_size/2)
n = (self.kernel_size - 1) / 2.0
# Due to symmetry, I only need half of the time axes
self.n_ = 2*math.pi*torch.arange(-n, 0).view(1, -1) / self.sample_rate
def forward(self, waveforms):
"""
Parameters
----------
waveforms : `torch.Tensor` (batch_size, 1, n_samples)
Batch of waveforms.
Returns
-------
features : `torch.Tensor` (batch_size, out_channels, n_samples_out)
Batch of sinc filters activations.
"""
self.n_ = self.n_.to(waveforms.device)
self.window_ = self.window_.to(waveforms.device)
low = self.min_low_hz + torch.abs(self.low_hz_)
high = torch.clamp(low + self.min_band_hz
+ torch.abs(self.band_hz_), self.min_low_hz, self.sample_rate/2)
band = (high-low)[:, 0]
f_times_t_low = torch.matmul(low, self.n_)
f_times_t_high = torch.matmul(high, self.n_)
# Equivalent of Eq.4 of the reference paper (SPEAKER RECOGNITION FROM RAW WAVEFORM WITH SINCNET). I just have expanded the sinc and simplified the terms. This way I avoid several useless computations.
band_pass_left = ((torch.sin(f_times_t_high)
- torch.sin(f_times_t_low))/(self.n_/2))*self.window_
band_pass_center = 2*band.view(-1, 1)
band_pass_right = torch.flip(band_pass_left, dims=[1])
band_pass = torch.cat(
[band_pass_left, band_pass_center, band_pass_right], dim=1)
band_pass = band_pass / (2*band[:, None])
self.filters = (band_pass).view(
self.out_channels, 1, self.kernel_size)
return F.conv1d(waveforms, self.filters, stride=self.stride,
padding=self.padding, dilation=self.dilation,
bias=None, groups=1)
class sinc_conv(nn.Module):
def __init__(self, N_filt, Filt_dim, fs):
super(sinc_conv, self).__init__()
# Mel Initialization of the filterbanks
low_freq_mel = 80
high_freq_mel = (2595 * np.log10(1 + (fs / 2) / 700)
) # Convert Hz to Mel
# Equally spaced in Mel scale
mel_points = np.linspace(low_freq_mel, high_freq_mel, N_filt)
f_cos = (700 * (10**(mel_points / 2595) - 1)) # Convert Mel to Hz
b1 = np.roll(f_cos, 1)
b2 = np.roll(f_cos, -1)
b1[0] = 30
b2[-1] = (fs/2)-100
self.freq_scale = fs*1.0
self.filt_b1 = nn.Parameter(torch.from_numpy(b1/self.freq_scale))
self.filt_band = nn.Parameter(
torch.from_numpy((b2-b1)/self.freq_scale))
self.N_filt = N_filt
self.Filt_dim = Filt_dim
self.fs = fs
def forward(self, x):
filters = Variable(torch.zeros((self.N_filt, self.Filt_dim))).cuda()
N = self.Filt_dim
t_right = Variable(torch.linspace(
1, (N-1)/2, steps=int((N-1)/2))/self.fs).cuda()
min_freq = 50.0
min_band = 50.0
filt_beg_freq = torch.abs(self.filt_b1)+min_freq/self.freq_scale
filt_end_freq = filt_beg_freq + \
(torch.abs(self.filt_band)+min_band/self.freq_scale)
n = torch.linspace(0, N, steps=N)
# Filter window (hamming)
window = 0.54-0.46*torch.cos(2*math.pi*n/N)
window = Variable(window.float().cuda())
for i in range(self.N_filt):
low_pass1 = 2 * \
filt_beg_freq[i].float()*sinc(filt_beg_freq[i].float()
* self.freq_scale, t_right)
low_pass2 = 2 * \
filt_end_freq[i].float()*sinc(filt_end_freq[i].float()
* self.freq_scale, t_right)
band_pass = (low_pass2-low_pass1)
band_pass = band_pass/torch.max(band_pass)
filters[i, :] = band_pass.cuda()*window
out = F.conv1d(x, filters.view(self.N_filt, 1, self.Filt_dim))
return out
def act_fun(act_type):
if act_type == "relu":
return nn.ReLU()
if act_type == "tanh":
return nn.Tanh()
if act_type == "sigmoid":
return nn.Sigmoid()
if act_type == "leaky_relu":
return nn.LeakyReLU(0.2)
if act_type == "elu":
return nn.ELU()
if act_type == "softmax":
return nn.LogSoftmax(dim=1)
if act_type == "linear":
return nn.LeakyReLU(1) # initializzed like this, but not used in forward!
class LayerNorm(nn.Module):
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(features))
self.beta = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.gamma * (x - mean) / (std + self.eps) + self.beta
class MLP(nn.Module):
def __init__(self, options):
super(MLP, self).__init__()
self.input_dim = int(options['input_dim'])
self.fc_lay = options['fc_lay']
self.fc_drop = options['fc_drop']
self.fc_use_batchnorm = options['fc_use_batchnorm']
self.fc_use_laynorm = options['fc_use_laynorm']
self.fc_use_laynorm_inp = options['fc_use_laynorm_inp']
self.fc_use_batchnorm_inp = options['fc_use_batchnorm_inp']
self.fc_act = options['fc_act']
self.wx = nn.ModuleList([])
self.bn = nn.ModuleList([])
self.ln = nn.ModuleList([])
self.act = nn.ModuleList([])
self.drop = nn.ModuleList([])
# input layer normalization
if self.fc_use_laynorm_inp:
self.ln0 = LayerNorm(self.input_dim)
# input batch normalization
if self.fc_use_batchnorm_inp:
self.bn0 = nn.BatchNorm1d([self.input_dim], momentum=0.05)
self.N_fc_lay = len(self.fc_lay)
current_input = self.input_dim
# Initialization of hidden layers
for i in range(self.N_fc_lay):
# dropout
self.drop.append(nn.Dropout(p=self.fc_drop[i]))
# activation
self.act.append(act_fun(self.fc_act[i]))
add_bias = True
# layer norm initialization
self.ln.append(LayerNorm(self.fc_lay[i]))
self.bn.append(nn.BatchNorm1d(self.fc_lay[i], momentum=0.05))
if self.fc_use_laynorm[i] or self.fc_use_batchnorm[i]:
add_bias = False
# Linear operations
self.wx.append(
nn.Linear(current_input, self.fc_lay[i], bias=add_bias))
# weight initialization
self.wx[i].weight = torch.nn.Parameter(torch.Tensor(self.fc_lay[i], current_input).uniform_(
-np.sqrt(0.01/(current_input+self.fc_lay[i])), np.sqrt(0.01/(current_input+self.fc_lay[i]))))
self.wx[i].bias = torch.nn.Parameter(torch.zeros(self.fc_lay[i]))
current_input = self.fc_lay[i]
def forward(self, x):
# Applying Layer/Batch Norm
if bool(self.fc_use_laynorm_inp):
x = self.ln0((x))
if bool(self.fc_use_batchnorm_inp):
x = self.bn0((x))
for i in range(self.N_fc_lay):
if self.fc_act[i] != 'linear':
if self.fc_use_laynorm[i]:
x = self.drop[i](self.act[i](self.ln[i](self.wx[i](x))))
if self.fc_use_batchnorm[i]:
x = self.drop[i](self.act[i](self.bn[i](self.wx[i](x))))
if self.fc_use_batchnorm[i] == False and self.fc_use_laynorm[i] == False:
x = self.drop[i](self.act[i](self.wx[i](x)))
else:
if self.fc_use_laynorm[i]:
x = self.drop[i](self.ln[i](self.wx[i](x)))
if self.fc_use_batchnorm[i]:
x = self.drop[i](self.bn[i](self.wx[i](x)))
if self.fc_use_batchnorm[i] == False and self.fc_use_laynorm[i] == False:
x = self.drop[i](self.wx[i](x))
return x
class SincNet(nn.Module):
def __init__(self, options):
super(SincNet, self).__init__()
self.cnn_N_filt = options['cnn_N_filt']
self.cnn_len_filt = options['cnn_len_filt']
self.cnn_max_pool_len = options['cnn_max_pool_len']
self.cnn_act = options['cnn_act']
self.cnn_drop = options['cnn_drop']
self.cnn_use_laynorm = options['cnn_use_laynorm']
self.cnn_use_batchnorm = options['cnn_use_batchnorm']
self.cnn_use_laynorm_inp = options['cnn_use_laynorm_inp']
self.cnn_use_batchnorm_inp = options['cnn_use_batchnorm_inp']
self.input_dim = int(options['input_dim'])
self.fs = options['fs']
self.N_cnn_lay = len(options['cnn_N_filt'])
self.conv = nn.ModuleList([])
self.bn = nn.ModuleList([])
self.ln = nn.ModuleList([])
self.act = nn.ModuleList([])
self.drop = nn.ModuleList([])
self.use_sinc = options['use_sinc']
if self.cnn_use_laynorm_inp:
self.ln0 = LayerNorm(self.input_dim)
if self.cnn_use_batchnorm_inp:
self.bn0 = nn.BatchNorm1d([self.input_dim], momentum=0.05)
current_input = self.input_dim
for i in range(self.N_cnn_lay):
N_filt = int(self.cnn_N_filt[i])
len_filt = int(self.cnn_len_filt[i])
# dropout
self.drop.append(nn.Dropout(p=self.cnn_drop[i]))
# activation
self.act.append(act_fun(self.cnn_act[i]))
# layer norm initialization
#self.ln.append(LayerNorm([N_filt,int((current_input-self.cnn_len_filt[i]+1)/self.cnn_max_pool_len[i])]))
self.bn.append(nn.BatchNorm1d(N_filt, momentum=0.05))
if i == 0:
if self.use_sinc:
self.conv.append(SincConv_fast(
self.cnn_N_filt[0], self.cnn_len_filt[0], self.fs))
else:
self.conv.append(
nn.Conv1d(1, self.cnn_N_filt[i], self.cnn_len_filt[i]))
else:
self.conv.append(
nn.Conv1d(self.cnn_N_filt[i-1], self.cnn_N_filt[i], self.cnn_len_filt[i]))
current_input = int(
(current_input-self.cnn_len_filt[i]+1)/self.cnn_max_pool_len[i])
self.out_dim = current_input*N_filt
def forward(self, x):
batch = x.shape[0]
seq_len = x.shape[-1]
if bool(self.cnn_use_laynorm_inp):
x = self.ln0((x))
if bool(self.cnn_use_batchnorm_inp):
x = self.bn0((x))
x = x.view(batch, 1, seq_len)
for i in range(self.N_cnn_lay):
s = x.shape[2]
padding = get_pad(
size=s, kernel_size=self.cnn_len_filt[i], stride=1, dilation=1)
x = F.pad(x, pad=padding, mode='circular')
if self.cnn_use_laynorm[i]:
if i == 0:
x = self.drop[i](self.act[i](self.ln[i](F.max_pool1d(
torch.abs(self.conv[i](x)), self.cnn_max_pool_len[i]))))
else:
x = self.drop[i](self.act[i](self.ln[i](
F.max_pool1d(self.conv[i](x), self.cnn_max_pool_len[i]))))
if self.cnn_use_batchnorm[i]:
x = self.drop[i](self.act[i](self.bn[i](
F.max_pool1d(self.conv[i](x), self.cnn_max_pool_len[i]))))
if self.cnn_use_batchnorm[i] == False and self.cnn_use_laynorm[i] == False:
x = self.drop[i](self.act[i](F.max_pool1d(
self.conv[i](x), self.cnn_max_pool_len[i])))
#x = x.view(batch,-1)
return x