-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_seldnet.py
937 lines (777 loc) · 50.4 KB
/
train_seldnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
#
# A wrapper script that trains the SELDnet. The training stops when the early stopping metric - SELD error stops improving.
#
import os
import sys
import numpy as np
import matplotlib.pyplot as plot
import cls_feature_class
import cls_data_generator
import parameters
import time
from time import gmtime, strftime
import torch
import torchaudio
import torch.nn as nn
import torch.optim as optim
plot.switch_backend('agg')
from IPython import embed
from cls_compute_seld_results import ComputeSELDResults, reshape_3Dto2D
from SELD_evaluation_metrics import distance_between_cartesian_coordinates
import seldnet_model
from model import NGCCModel
from speechbrain.nnet.losses import PitWrapper
from cst_former.CST_former_model import CST_former
from torchinfo import summary
from warmup_scheduler import GradualWarmupScheduler
import random
def seed_everything(seed):
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def get_model_and_sizes(params, data_gen, device):
# Collect i/o data size and load model configuration
if params['modality'] == 'audio_visual':
data_in, vid_data_in, data_out = data_gen.get_data_sizes()
else:
data_in, data_out = data_gen.get_data_sizes()
vid_data_in = None
if params['model'] == 'seldnet':
model = seldnet_model.SeldModel(data_in, data_out, params, vid_data_in).to(device)
elif params['model'] == 'myseldnet':
model = seldnet_model.SeldModel(data_in, data_out, params, vid_data_in).to(device)
elif params['model'] == 'ngccmodel':
model = NGCCModel(data_in, data_out, params, vid_data_in).to(device)
elif params['model'] == 'cstformer':
model = CST_former(data_in, data_out, params, vid_data_in).to(device)
else:
print('ERROR: Unknown model configuration')
exit()
return model, data_in, vid_data_in, data_out
def deg2rad(deg):
return deg * 2 * np.pi / 360
def rad2deg(rad):
return rad * 360 / (2 * np.pi)
def center_mic_coords(mic_coords, mic_center):
mic_locs = np.empty((0, 3))
for coord in mic_coords:
rad, azi, ele = coord
azi = deg2rad(azi)
ele = deg2rad(ele)
x_offset = rad * np.cos(azi) * np.cos(ele)
y_offset = rad * np.sin(azi) * np.cos(ele)
z_offset = rad * np.sin(ele)
mic_loc = mic_center + np.array([x_offset, y_offset, z_offset])
mic_locs = np.vstack([mic_locs, mic_loc])
return mic_locs
class TdoaLoss(nn.Module):
def __init__(self, fs=24000, c=343, nmics=4, ntdoas=6, max_tau=6, tracks=5):
super(TdoaLoss, self).__init__()
self.ignore_idx = int(-100) # this is for ignoring tim frames with no active events
self.loss_module = nn.CrossEntropyLoss(ignore_index=-100, reduction='none')
self.pit_loss = PitWrapper(self.loss_module)
self.fs = fs
self.c = c
self.nmics = nmics
self.ntdoas = ntdoas
self.max_tau = int(max_tau)
self.tracks = tracks
assert self.tracks <= 3 # we do not support more than 3 tracks
self.max_events = 3 # more than 3 events are discarded.
m1_coords = [0.042, 45, 35]
m2_coords = [0.042, -45, -35]
m3_coords = [0.042, 135, -35]
m4_coords = [0.042, -135, 35]
mic_coords = [m1_coords, m2_coords, m3_coords, m4_coords]
mic_center = [0.0, 0.0, 0.0]
self.mic_locs = torch.Tensor(center_mic_coords(mic_coords, mic_center))
def get_tdoa_target(self, target):
B, T, _, F, C = target.shape
tdoas = torch.zeros((B, T, self.max_events, self.ntdoas))
tdoas[:] = torch.nan
tdoas2 = tdoas.clone()
for b in range(B):
for t in range(T):
tr_cnt = 0 # the track counter keeps track of the # of active events
for tr in range(self.max_events):
classes = list(range(C))
random.shuffle(classes) # randomly loop over classes in order to pick 3 events randomly
for c in classes:
if tr_cnt >= self.max_events:
break
active = target[b, t, tr, 0, c]
if active:
doa = target[b, t, tr, 1:4, c].squeeze()
dist = target[b, t, tr, 4, c]
source_loc = doa * dist
cnt = 0
for m1 in range(self.nmics):
for m2 in range(m1+1, self.nmics):
mic1 = self.mic_locs[m1]
mic2 = self.mic_locs[m2]
tdoa = torch.sqrt(torch.sum((source_loc-mic1)**2)) - torch.sqrt(torch.sum((source_loc-mic2)**2))
tdoa = int(torch.round(tdoa*self.fs/self.c))
tdoas[b, t, tr_cnt, cnt] = tdoa+self.max_tau
tdoas2[b, t, tr_cnt, cnt] = tdoa+self.max_tau
cnt +=1
tr_cnt += 1
if tr_cnt == 0:
tdoas[b, t, :, :] = self.ignore_idx
tdoas2[b, t, :, :] = self.ignore_idx
elif tr_cnt < self.max_events:
tdoas[b, t, tr_cnt:, :] = tdoas[b, t, tr_cnt-1, :] # repeat the last event
tdoas2[b, t, tr_cnt:, :] = tdoas[b, t, 0, :] # repeat the first event
return tdoas, tdoas2
def forward(self, pred, target):
self.mic_locs = self.mic_locs.to(target.device)
#print("calculating target")
tdoa_target, tdoa_target_2 = self.get_tdoa_target(target)
B, T, C, Tr, ntdoa = pred.shape
tdoa_target = tdoa_target.permute(0, 1, 3, 2).reshape(B*T*ntdoa, self.max_events).long().to(pred.device)
pred = pred.permute(0, 1, 4, 2, 3).reshape(B*T*ntdoa, C, Tr)
if self.tracks == 1: # there are up to 3 events. Check each loss and return the minimum (per-example)
t1 = tdoa_target[:, 0].unsqueeze(1)
t2 = tdoa_target[:, 1].unsqueeze(1)
t3 = tdoa_target[:, 2].unsqueeze(1)
loss1, opt_p1 = self.pit_loss(pred.unsqueeze(1), t1.unsqueeze(1))
loss2, opt_p2 = self.pit_loss(pred.unsqueeze(1), t2.unsqueeze(1))
loss3, opt_p3 = self.pit_loss(pred.unsqueeze(1), t3.unsqueeze(1))
loss_min = torch.min(
torch.stack((loss1, loss2, loss3), dim=0), dim=0).indices
loss = (loss1 * (loss_min.unsqueeze(1) == 0) + loss2 * (loss_min.unsqueeze(1) == 1) + loss3 * (loss_min.unsqueeze(1) == 2))
tdoa_target = (t1 * (loss_min.unsqueeze(1) == 0) + t2 * (loss_min.unsqueeze(1) == 1) + t3 * (loss_min.unsqueeze(1) == 2))
opt_p = []
for b in range(tdoa_target.shape[0]):
if loss_min[b] == 0:
opt_p.append(opt_p1[b])
elif loss_min[b] == 1:
opt_p.append(opt_p2[b])
else:
opt_p.append(opt_p3[b])
elif self.tracks == 2: # we need to check combinations of the events (0, 1) (0, 2) and (1,2)
t1 = tdoa_target[:, 0:2]
t2 = tdoa_target[:, 1:3]
t3 = torch.stack((tdoa_target[:, 0], tdoa_target[:, 2]), dim=1)
loss1, opt_p1 = self.pit_loss(pred.unsqueeze(1), t1.unsqueeze(1))
loss2, opt_p2 = self.pit_loss(pred.unsqueeze(1), t2.unsqueeze(1))
loss3, opt_p3 = self.pit_loss(pred.unsqueeze(1), t3.unsqueeze(1))
loss_min = torch.min(
torch.stack((loss1, loss2, loss3), dim=0), dim=0).indices
loss = (loss1 * (loss_min.unsqueeze(1) == 0) + loss2 * (loss_min.unsqueeze(1) == 1) + loss3 * (loss_min.unsqueeze(1) == 2))
tdoa_target = (t1 * (loss_min.unsqueeze(1) == 0) + t2 * (loss_min.unsqueeze(1) == 1) + t3 * (loss_min.unsqueeze(1) == 2))
opt_p = []
for b in range(tdoa_target.shape[0]):
if loss_min[b] == 0:
opt_p.append(opt_p1[b])
elif loss_min[b] == 1:
opt_p.append(opt_p2[b])
else:
opt_p.append(opt_p3[b])
else: # there are 3 tracks, but we need two losses.
#If there are 1 or 3 events, they will be identical, but if there are 2 events they will be different
loss1, opt_p1 = self.pit_loss(pred.unsqueeze(1), tdoa_target.unsqueeze(1)) # here the last event is repeated
tdoa_target_2 = tdoa_target_2.permute(0, 1, 3, 2).reshape(B*T*ntdoa, self.max_events).long().to(pred.device)
loss2, opt_p2 = self.pit_loss(pred.unsqueeze(1), tdoa_target_2.unsqueeze(1)) # here the first event is repeated
loss_min = torch.min(
torch.stack((loss1, loss2), dim=0), dim=0).indices
loss = (loss1 * (loss_min == 0) + loss2 * (loss_min == 1))
tdoa_target = (tdoa_target * (loss_min.unsqueeze(1) == 0) + tdoa_target_2 * (loss_min.unsqueeze(1) == 1))
opt_p = []
for b in range(tdoa_target.shape[0]):
if loss_min[b] == 0:
opt_p.append(opt_p1[b])
else:
opt_p.append(opt_p2[b])
acc = 0.
n_pred = 0.
for b in range(tdoa_target.shape[0]):
this_pred = pred[b].argmax(dim=0, keepdim=False)
this_target = tdoa_target[b, list(opt_p[b])]
valid_idx = this_target!=-100
this_target = this_target[valid_idx]
this_pred = this_pred[valid_idx]
if not this_pred.nelement() == 0:
acc += this_pred.eq(this_target.view_as(this_pred)).float().sum().item()
n_pred += this_pred.nelement()
if n_pred > 0:
acc = acc / n_pred
else:
acc = 0.
valid_idx = torch.where(loss > 0.)[0]
return loss[valid_idx].mean(), acc
def get_accdoa_labels(accdoa_in, nb_classes):
x, y, z = accdoa_in[:, :, :nb_classes], accdoa_in[:, :, nb_classes:2*nb_classes], accdoa_in[:, :, 2*nb_classes:]
sed = np.sqrt(x**2 + y**2 + z**2) > 0.5
return sed, accdoa_in
def get_multi_accdoa_labels(accdoa_in, nb_classes):
"""
Args:
accdoa_in: [batch_size, frames, num_track*num_axis*num_class=3*3*12]
nb_classes: scalar
Return:
sedX: [batch_size, frames, num_class=12]
doaX: [batch_size, frames, num_axis*num_class=3*12]
"""
x0, y0, z0 = accdoa_in[:, :, :1*nb_classes], accdoa_in[:, :, 1*nb_classes:2*nb_classes], accdoa_in[:, :, 2*nb_classes:3*nb_classes]
dist0 = accdoa_in[:, :, 3*nb_classes:4*nb_classes]
dist0[dist0 < 0.] = 0.
sed0 = np.sqrt(x0**2 + y0**2 + z0**2) > 0.5
doa0 = accdoa_in[:, :, :3*nb_classes]
x1, y1, z1 = accdoa_in[:, :, 4*nb_classes:5*nb_classes], accdoa_in[:, :, 5*nb_classes:6*nb_classes], accdoa_in[:, :, 6*nb_classes:7*nb_classes]
dist1 = accdoa_in[:, :, 7*nb_classes:8*nb_classes]
dist1[dist1<0.] = 0.
sed1 = np.sqrt(x1**2 + y1**2 + z1**2) > 0.5
doa1 = accdoa_in[:, :, 4*nb_classes: 7*nb_classes]
x2, y2, z2 = accdoa_in[:, :, 8*nb_classes:9*nb_classes], accdoa_in[:, :, 9*nb_classes:10*nb_classes], accdoa_in[:, :, 10*nb_classes:11*nb_classes]
dist2 = accdoa_in[:, :, 11*nb_classes:]
dist2[dist2<0.] = 0.
sed2 = np.sqrt(x2**2 + y2**2 + z2**2) > 0.5
doa2 = accdoa_in[:, :, 8*nb_classes:11*nb_classes]
return sed0, doa0, dist0, sed1, doa1, dist1, sed2, doa2, dist2
def determine_similar_location(sed_pred0, sed_pred1, doa_pred0, doa_pred1, class_cnt, thresh_unify, nb_classes):
if (sed_pred0 == 1) and (sed_pred1 == 1):
if distance_between_cartesian_coordinates(doa_pred0[class_cnt], doa_pred0[class_cnt+1*nb_classes], doa_pred0[class_cnt+2*nb_classes],
doa_pred1[class_cnt], doa_pred1[class_cnt+1*nb_classes], doa_pred1[class_cnt+2*nb_classes]) < thresh_unify:
return 1
else:
return 0
else:
return 0
def eval_epoch(data_generator, model, dcase_output_folder, params, device):
eval_filelist = data_generator.get_filelist()
model.eval()
file_cnt = 0
with torch.no_grad():
for values in data_generator.generate():
if len(values) == 2: # audio visual
data, vid_feat = values
data, vid_feat = torch.tensor(data).to(device).float(), torch.tensor(vid_feat).to(device).float()
output = model(data, vid_feat)
else:
data = values
data = torch.tensor(data).to(device).float()
output = model(data)
if params['multi_accdoa'] is True:
sed_pred0, doa_pred0, dist_pred0, sed_pred1, doa_pred1, dist_pred1, sed_pred2, doa_pred2, dist_pred2 = get_multi_accdoa_labels(output.detach().cpu().numpy(), params['unique_classes'])
sed_pred0 = reshape_3Dto2D(sed_pred0)
doa_pred0 = reshape_3Dto2D(doa_pred0)
dist_pred0 = reshape_3Dto2D(dist_pred0)
sed_pred1 = reshape_3Dto2D(sed_pred1)
doa_pred1 = reshape_3Dto2D(doa_pred1)
dist_pred1 = reshape_3Dto2D(dist_pred1)
sed_pred2 = reshape_3Dto2D(sed_pred2)
doa_pred2 = reshape_3Dto2D(doa_pred2)
dist_pred2 = reshape_3Dto2D(dist_pred2)
else:
sed_pred, doa_pred = get_accdoa_labels(output.detach().cpu().numpy(), params['unique_classes'])
sed_pred = reshape_3Dto2D(sed_pred)
doa_pred = reshape_3Dto2D(doa_pred)
# dump SELD results to the correspondin file
output_file = os.path.join(dcase_output_folder, eval_filelist[file_cnt].replace('.npy', '.csv'))
file_cnt += 1
output_dict = {}
if params['multi_accdoa'] is True:
for frame_cnt in range(sed_pred0.shape[0]):
for class_cnt in range(sed_pred0.shape[1]):
# determine whether track0 is similar to track1
flag_0sim1 = determine_similar_location(sed_pred0[frame_cnt][class_cnt], sed_pred1[frame_cnt][class_cnt], doa_pred0[frame_cnt], doa_pred1[frame_cnt], class_cnt, params['thresh_unify'], params['unique_classes'])
flag_1sim2 = determine_similar_location(sed_pred1[frame_cnt][class_cnt], sed_pred2[frame_cnt][class_cnt], doa_pred1[frame_cnt], doa_pred2[frame_cnt], class_cnt, params['thresh_unify'], params['unique_classes'])
flag_2sim0 = determine_similar_location(sed_pred2[frame_cnt][class_cnt], sed_pred0[frame_cnt][class_cnt], doa_pred2[frame_cnt], doa_pred0[frame_cnt], class_cnt, params['thresh_unify'], params['unique_classes'])
# unify or not unify according to flag
if flag_0sim1 + flag_1sim2 + flag_2sim0 == 0:
if sed_pred0[frame_cnt][class_cnt]>0.5:
if frame_cnt not in output_dict:
output_dict[frame_cnt] = []
output_dict[frame_cnt].append([class_cnt, doa_pred0[frame_cnt][class_cnt], doa_pred0[frame_cnt][class_cnt+params['unique_classes']], doa_pred0[frame_cnt][class_cnt+2*params['unique_classes']], dist_pred0[frame_cnt][class_cnt]])
if sed_pred1[frame_cnt][class_cnt]>0.5:
if frame_cnt not in output_dict:
output_dict[frame_cnt] = []
output_dict[frame_cnt].append([class_cnt, doa_pred1[frame_cnt][class_cnt], doa_pred1[frame_cnt][class_cnt+params['unique_classes']], doa_pred1[frame_cnt][class_cnt+2*params['unique_classes']], dist_pred1[frame_cnt][class_cnt]])
if sed_pred2[frame_cnt][class_cnt]>0.5:
if frame_cnt not in output_dict:
output_dict[frame_cnt] = []
output_dict[frame_cnt].append([class_cnt, doa_pred2[frame_cnt][class_cnt], doa_pred2[frame_cnt][class_cnt+params['unique_classes']], doa_pred2[frame_cnt][class_cnt+2*params['unique_classes']], dist_pred2[frame_cnt][class_cnt]])
elif flag_0sim1 + flag_1sim2 + flag_2sim0 == 1:
if frame_cnt not in output_dict:
output_dict[frame_cnt] = []
if flag_0sim1:
if sed_pred2[frame_cnt][class_cnt]>0.5:
output_dict[frame_cnt].append([class_cnt, doa_pred2[frame_cnt][class_cnt], doa_pred2[frame_cnt][class_cnt+params['unique_classes']], doa_pred2[frame_cnt][class_cnt+2*params['unique_classes']], dist_pred2[frame_cnt][class_cnt]])
doa_pred_fc = (doa_pred0[frame_cnt] + doa_pred1[frame_cnt]) / 2
dist_pred_fc = (dist_pred0[frame_cnt] + dist_pred1[frame_cnt]) / 2
output_dict[frame_cnt].append([class_cnt, doa_pred_fc[class_cnt], doa_pred_fc[class_cnt+params['unique_classes']], doa_pred_fc[class_cnt+2*params['unique_classes']], dist_pred_fc[class_cnt]])
elif flag_1sim2:
if sed_pred0[frame_cnt][class_cnt]>0.5:
output_dict[frame_cnt].append([class_cnt, doa_pred0[frame_cnt][class_cnt], doa_pred0[frame_cnt][class_cnt+params['unique_classes']], doa_pred0[frame_cnt][class_cnt+2*params['unique_classes']], dist_pred0[frame_cnt][class_cnt]])
doa_pred_fc = (doa_pred1[frame_cnt] + doa_pred2[frame_cnt]) / 2
dist_pred_fc = (dist_pred1[frame_cnt] + dist_pred2[frame_cnt]) / 2
output_dict[frame_cnt].append([class_cnt, doa_pred_fc[class_cnt], doa_pred_fc[class_cnt+params['unique_classes']], doa_pred_fc[class_cnt+2*params['unique_classes']], dist_pred_fc[class_cnt]])
elif flag_2sim0:
if sed_pred1[frame_cnt][class_cnt]>0.5:
output_dict[frame_cnt].append([class_cnt, doa_pred1[frame_cnt][class_cnt], doa_pred1[frame_cnt][class_cnt+params['unique_classes']], doa_pred1[frame_cnt][class_cnt+2*params['unique_classes']], dist_pred1[frame_cnt][class_cnt]])
doa_pred_fc = (doa_pred2[frame_cnt] + doa_pred0[frame_cnt]) / 2
dist_pred_fc = (dist_pred2[frame_cnt] + dist_pred0[frame_cnt]) / 2
output_dict[frame_cnt].append([class_cnt, doa_pred_fc[class_cnt], doa_pred_fc[class_cnt+params['unique_classes']], doa_pred_fc[class_cnt+2*params['unique_classes']], dist_pred_fc[class_cnt]])
elif flag_0sim1 + flag_1sim2 + flag_2sim0 >= 2:
if frame_cnt not in output_dict:
output_dict[frame_cnt] = []
doa_pred_fc = (doa_pred0[frame_cnt] + doa_pred1[frame_cnt] + doa_pred2[frame_cnt]) / 3
dist_pred_fc = (dist_pred0[frame_cnt] + dist_pred1[frame_cnt] + dist_pred2[frame_cnt]) / 3
output_dict[frame_cnt].append([class_cnt, doa_pred_fc[class_cnt], doa_pred_fc[class_cnt+params['unique_classes']], doa_pred_fc[class_cnt+2*params['unique_classes']], dist_pred_fc[class_cnt]])
else:
for frame_cnt in range(sed_pred.shape[0]):
for class_cnt in range(sed_pred.shape[1]):
if sed_pred[frame_cnt][class_cnt]>0.5:
if frame_cnt not in output_dict:
output_dict[frame_cnt] = []
output_dict[frame_cnt].append([class_cnt, doa_pred[frame_cnt][class_cnt], doa_pred[frame_cnt][class_cnt+params['unique_classes']], doa_pred[frame_cnt][class_cnt+2*params['unique_classes']]])
data_generator.write_output_format_file(output_file, output_dict)
def test_epoch(data_generator, model, criterion, dcase_output_folder, params, device, criterion_tdoa=None):
# Number of frames for a 60 second audio with 100ms hop length = 600 frames
# Number of frames in one batch (batch_size* sequence_length) consists of all the 600 frames above with zero padding in the remaining frames
test_filelist = data_generator.get_filelist()
nb_test_batches, test_loss = 0, 0.
model.eval()
file_cnt = 0
with torch.no_grad():
for values in data_generator.generate():
if len(values) == 2:
data, target = values
data, target = torch.tensor(data).to(device).float(), torch.tensor(target).to(device).float()
bs = params['batch_size']
if data.shape[0] > bs and params['raw_chunks']:
max_cnt = data.shape[0] // bs
output = []
output_tdoa = []
for cnt in range(0, max_cnt):
this_data = data[cnt*bs:(cnt+1)*bs]
if criterion_tdoa is not None:
this_output, this_output_tdoa = model(this_data)
output.append(this_output)
output_tdoa.append(this_output_tdoa)
else:
this_output = model(this_data)
output.append(this_output)
this_data = data[(cnt+1)*bs:]
if criterion_tdoa is not None:
this_output, this_output_tdoa = model(this_data)
output.append(this_output)
output_tdoa.append(this_output_tdoa)
output_tdoa = torch.cat(output_tdoa, dim=0)
else:
this_output = model(this_data)
output.append(this_output)
output = torch.cat(output, dim=0)
else:
if criterion_tdoa is not None:
output, output_tdoa = model(data)
else:
output = model(data)
elif len(values) == 3:
data, vid_feat, target = values
data, vid_feat, target = torch.tensor(data).to(device).float(), torch.tensor(vid_feat).to(device).float(), torch.tensor(target).to(device).float()
output = model(data, vid_feat)
if criterion_tdoa is not None:
loss1 = criterion(output, target)
loss2, acc = criterion_tdoa(output_tdoa, target)
loss = (1.0 - params['lambda']) * loss1 + params['lambda'] * loss2
else:
loss = criterion(output, target)
if params['multi_accdoa'] is True:
sed_pred0, doa_pred0, dist_pred0, sed_pred1, doa_pred1, dist_pred1, sed_pred2, doa_pred2, dist_pred2 = get_multi_accdoa_labels(output.detach().cpu().numpy(), params['unique_classes'])
sed_pred0 = reshape_3Dto2D(sed_pred0)
doa_pred0 = reshape_3Dto2D(doa_pred0)
dist_pred0 = reshape_3Dto2D(dist_pred0)
sed_pred1 = reshape_3Dto2D(sed_pred1)
doa_pred1 = reshape_3Dto2D(doa_pred1)
dist_pred1 = reshape_3Dto2D(dist_pred1)
sed_pred2 = reshape_3Dto2D(sed_pred2)
doa_pred2 = reshape_3Dto2D(doa_pred2)
dist_pred2 = reshape_3Dto2D(dist_pred2)
else:
sed_pred, doa_pred = get_accdoa_labels(output.detach().cpu().numpy(), params['unique_classes'])
sed_pred = reshape_3Dto2D(sed_pred)
doa_pred = reshape_3Dto2D(doa_pred)
# dump SELD results to the correspondin file
output_file = os.path.join(dcase_output_folder, test_filelist[file_cnt].replace('.npy', '.csv'))
file_cnt += 1
output_dict = {}
if params['multi_accdoa'] is True:
for frame_cnt in range(sed_pred0.shape[0]):
for class_cnt in range(sed_pred0.shape[1]):
# determine whether track0 is similar to track1
flag_0sim1 = determine_similar_location(sed_pred0[frame_cnt][class_cnt], sed_pred1[frame_cnt][class_cnt], doa_pred0[frame_cnt], doa_pred1[frame_cnt], class_cnt, params['thresh_unify'], params['unique_classes'])
flag_1sim2 = determine_similar_location(sed_pred1[frame_cnt][class_cnt], sed_pred2[frame_cnt][class_cnt], doa_pred1[frame_cnt], doa_pred2[frame_cnt], class_cnt, params['thresh_unify'], params['unique_classes'])
flag_2sim0 = determine_similar_location(sed_pred2[frame_cnt][class_cnt], sed_pred0[frame_cnt][class_cnt], doa_pred2[frame_cnt], doa_pred0[frame_cnt], class_cnt, params['thresh_unify'], params['unique_classes'])
# unify or not unify according to flag
if flag_0sim1 + flag_1sim2 + flag_2sim0 == 0:
if sed_pred0[frame_cnt][class_cnt]>0.5:
if frame_cnt not in output_dict:
output_dict[frame_cnt] = []
output_dict[frame_cnt].append([class_cnt, doa_pred0[frame_cnt][class_cnt], doa_pred0[frame_cnt][class_cnt+params['unique_classes']], doa_pred0[frame_cnt][class_cnt+2*params['unique_classes']], dist_pred0[frame_cnt][class_cnt]])
if sed_pred1[frame_cnt][class_cnt]>0.5:
if frame_cnt not in output_dict:
output_dict[frame_cnt] = []
output_dict[frame_cnt].append([class_cnt, doa_pred1[frame_cnt][class_cnt], doa_pred1[frame_cnt][class_cnt+params['unique_classes']], doa_pred1[frame_cnt][class_cnt+2*params['unique_classes']], dist_pred1[frame_cnt][class_cnt]])
if sed_pred2[frame_cnt][class_cnt]>0.5:
if frame_cnt not in output_dict:
output_dict[frame_cnt] = []
output_dict[frame_cnt].append([class_cnt, doa_pred2[frame_cnt][class_cnt], doa_pred2[frame_cnt][class_cnt+params['unique_classes']], doa_pred2[frame_cnt][class_cnt+2*params['unique_classes']], dist_pred2[frame_cnt][class_cnt]])
elif flag_0sim1 + flag_1sim2 + flag_2sim0 == 1:
if frame_cnt not in output_dict:
output_dict[frame_cnt] = []
if flag_0sim1:
if sed_pred2[frame_cnt][class_cnt]>0.5:
output_dict[frame_cnt].append([class_cnt, doa_pred2[frame_cnt][class_cnt], doa_pred2[frame_cnt][class_cnt+params['unique_classes']], doa_pred2[frame_cnt][class_cnt+2*params['unique_classes']], dist_pred2[frame_cnt][class_cnt]])
doa_pred_fc = (doa_pred0[frame_cnt] + doa_pred1[frame_cnt]) / 2
dist_pred_fc = (dist_pred0[frame_cnt] + dist_pred1[frame_cnt]) / 2
output_dict[frame_cnt].append([class_cnt, doa_pred_fc[class_cnt], doa_pred_fc[class_cnt+params['unique_classes']], doa_pred_fc[class_cnt+2*params['unique_classes']], dist_pred_fc[class_cnt]])
elif flag_1sim2:
if sed_pred0[frame_cnt][class_cnt]>0.5:
output_dict[frame_cnt].append([class_cnt, doa_pred0[frame_cnt][class_cnt], doa_pred0[frame_cnt][class_cnt+params['unique_classes']], doa_pred0[frame_cnt][class_cnt+2*params['unique_classes']], dist_pred0[frame_cnt][class_cnt]])
doa_pred_fc = (doa_pred1[frame_cnt] + doa_pred2[frame_cnt]) / 2
dist_pred_fc = (dist_pred1[frame_cnt] + dist_pred2[frame_cnt]) / 2
output_dict[frame_cnt].append([class_cnt, doa_pred_fc[class_cnt], doa_pred_fc[class_cnt+params['unique_classes']], doa_pred_fc[class_cnt+2*params['unique_classes']], dist_pred_fc[class_cnt]])
elif flag_2sim0:
if sed_pred1[frame_cnt][class_cnt]>0.5:
output_dict[frame_cnt].append([class_cnt, doa_pred1[frame_cnt][class_cnt], doa_pred1[frame_cnt][class_cnt+params['unique_classes']], doa_pred1[frame_cnt][class_cnt+2*params['unique_classes']], dist_pred1[frame_cnt][class_cnt]])
doa_pred_fc = (doa_pred2[frame_cnt] + doa_pred0[frame_cnt]) / 2
dist_pred_fc = (dist_pred2[frame_cnt] + dist_pred0[frame_cnt]) / 2
output_dict[frame_cnt].append([class_cnt, doa_pred_fc[class_cnt], doa_pred_fc[class_cnt+params['unique_classes']], doa_pred_fc[class_cnt+2*params['unique_classes']], dist_pred_fc[class_cnt]])
elif flag_0sim1 + flag_1sim2 + flag_2sim0 >= 2:
if frame_cnt not in output_dict:
output_dict[frame_cnt] = []
doa_pred_fc = (doa_pred0[frame_cnt] + doa_pred1[frame_cnt] + doa_pred2[frame_cnt]) / 3
dist_pred_fc = (dist_pred0[frame_cnt] + dist_pred1[frame_cnt] + dist_pred2[frame_cnt]) / 3
output_dict[frame_cnt].append([class_cnt, doa_pred_fc[class_cnt], doa_pred_fc[class_cnt+params['unique_classes']], doa_pred_fc[class_cnt+2*params['unique_classes']], dist_pred_fc[class_cnt]])
else:
for frame_cnt in range(sed_pred.shape[0]):
for class_cnt in range(sed_pred.shape[1]):
if sed_pred[frame_cnt][class_cnt]>0.5:
if frame_cnt not in output_dict:
output_dict[frame_cnt] = []
output_dict[frame_cnt].append([class_cnt, doa_pred[frame_cnt][class_cnt], doa_pred[frame_cnt][class_cnt+params['unique_classes']], doa_pred[frame_cnt][class_cnt+2*params['unique_classes']]])
data_generator.write_output_format_file(output_file, output_dict)
test_loss += loss.item()
nb_test_batches += 1
if params['quick_test'] and nb_test_batches == 4:
break
test_loss /= nb_test_batches
return test_loss
def train_epoch(data_generator, optimizer, model, criterion, params, device, criterion_tdoa):
nb_train_batches, train_loss = 0, 0.
model.train()
tdoa_loss_ma = -1
tdoa_acc_ma = -1
for values in data_generator.generate():
# load one batch of data
if len(values) == 2:
data, target = values
data, target = torch.tensor(data).to(device).float(), torch.tensor(target).to(device).float()
optimizer.zero_grad()
if criterion_tdoa is not None:
output, output_tdoa = model(data)
else:
output = model(data)
elif len(values) == 3:
data, vid_feat, target = values
data, vid_feat, target = torch.tensor(data).to(device).float(), torch.tensor(vid_feat).to(device).float(), torch.tensor(target).to(device).float()
optimizer.zero_grad()
output = model(data, vid_feat)
if criterion_tdoa is not None:
loss1 = criterion(output, target)
loss2, acc = criterion_tdoa(output_tdoa, target)
if tdoa_loss_ma == -1:
if not torch.isnan(loss2):
tdoa_loss_ma = loss2.item()
tdoa_acc_ma = acc
else:
if not torch.isnan(loss2):
tdoa_loss_ma = 0.95 * tdoa_loss_ma + 0.05 * loss2.item()
tdoa_acc_ma = 0.95 * tdoa_acc_ma + 0.05 * acc
print("batch : " + str(nb_train_batches) + ", tdoa loss: " + str(tdoa_loss_ma)+ ", tdoa acc: " + str(tdoa_acc_ma), flush=True)
loss = (1.0 - params['lambda']) * loss1 + params['lambda'] * loss2
else:
loss = criterion(output, target)
if not torch.isnan(loss):
loss.backward()
optimizer.step()
train_loss += loss.item()
nb_train_batches += 1
if params['quick_test'] and nb_train_batches == 4:
break
train_loss /= nb_train_batches
return train_loss
def main(argv):
"""
Main wrapper for training sound event localization and detection network.
:param argv: expects two optional inputs.
first input: task_id - (optional) To chose the system configuration in parameters.py.
(default) 1 - uses default parameters
second input: job_id - (optional) all the output files will be uniquely represented with this.
(default) 1
"""
print(argv)
if len(argv) != 4:
print('\n\n')
print('-------------------------------------------------------------------------------------------------------')
print('The code expected two optional inputs')
print('\t>> python seld.py <task-id> <job-id> <seed>')
print('\t\t<task-id> is used to choose the user-defined parameter set from parameter.py')
print('Using default inputs for now')
print('\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
'You can use any number or string for this.')
print('-------------------------------------------------------------------------------------------------------')
print('\n\n')
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
torch.autograd.set_detect_anomaly(True)
# use parameter set defined by user
task_id = '1' if len(argv) < 2 else argv[1]
params = parameters.get_params(task_id)
job_id = 1 if len(argv) < 3 else argv[2]
seed = 42 if len(argv) < 4 else int(argv[3])
# set the random seed
seed_everything(seed)
# Training setup
train_splits, val_splits, test_splits = None, None, None
if params['mode'] == 'dev':
if not os.path.exists('logs'):
os.makedirs('logs')
LOG_FOUT = open(os.path.join('logs/', job_id+'.txt'), 'w')
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str, flush=True)
for key, value in params.items():
log_string("\t{}: {}".format(key, value))
if '2020' in params['dataset_dir']:
test_splits = [1]
val_splits = [2]
train_splits = [[3, 4, 5, 6]]
elif '2021' in params['dataset_dir']:
test_splits = [6]
val_splits = [5]
train_splits = [[1, 2, 3, 4]]
elif '2022' in params['dataset_dir']:
test_splits = [[4]]
val_splits = [[4]]
train_splits = [[1, 2, 3]]
elif '2023' in params['dataset_dir']:
test_splits = [[4]]
val_splits = [[4]]
train_splits = [[1, 2, 3]]
elif '2024' in params['dataset_dir']:
test_splits = [[4]]
val_splits = [[4]]
train_splits = [[3]]# add split 1 and 2 to training, if you have downloaded simulated data
else:
log_string('ERROR: Unknown dataset splits')
exit()
for split_cnt, split in enumerate(test_splits):
log_string('\n\n---------------------------------------------------------------------------------------------------')
log_string('------------------------------------ SPLIT {} -----------------------------------------------'.format(split))
log_string('---------------------------------------------------------------------------------------------------')
# Unique name for the run
loc_feat = params['dataset']
if params['dataset'] == 'mic':
if params['use_salsalite']:
loc_feat = '{}_salsa'.format(params['dataset'])
else:
loc_feat = '{}_gcc'.format(params['dataset'])
loc_output = 'multiaccdoa' if params['multi_accdoa'] else 'accdoa'
cls_feature_class.create_folder(params['model_dir'])
unique_name = '{}_{}_{}_split{}_{}_{}'.format(
task_id, job_id, params['mode'], split_cnt, loc_output, loc_feat
)
model_name = '{}_model.h5'.format(os.path.join(params['model_dir'], unique_name))
model_name_final = '{}_model_final.h5'.format(os.path.join(params['model_dir'], unique_name))
log_string("unique_name: {}\n".format(unique_name))
# Load train and validation data
log_string('Loading training dataset:')
log_string(str(train_splits[split_cnt]))
data_gen_train = cls_data_generator.DataGenerator(
params=params, split=train_splits[split_cnt]
)
log_string('Loading validation dataset:')
log_string(str(val_splits[split_cnt]))
data_gen_val= cls_data_generator.DataGenerator(
params=params, split=val_splits[split_cnt], shuffle=False, per_file=True
)
model, data_in, vid_data_in, data_out = get_model_and_sizes(params, data_gen_train, device)
if params['finetune_mode']:
log_string('Running in finetuning mode. Initializing the model to the weights - {}'.format(params['pretrained_model_weights']))
state_dict = torch.load(params['pretrained_model_weights'], map_location='cpu')
if params['modality'] == 'audio_visual':
state_dict = {k: v for k, v in state_dict.items() if 'fnn' not in k}
if params['model'] == 'ngccmodel':
# skip layers with non-matching shapes when loading weights
model_dict = model.state_dict()
state_dict = {k: v for k, v in state_dict.items() if
(k in model_dict) and (model_dict[k].shape == state_dict[k].shape)}
model.load_state_dict(state_dict, strict=False)
log_string('---------------- SELD-net -------------------')
log_string('FEATURES:\n\tdata_in: {}\n\tdata_out: {}\n'.format(data_in, data_out))
log_string('MODEL:\n\tdropout_rate: {}\n\tCNN: nb_cnn_filt: {}, f_pool_size{}, t_pool_size{}\n, rnn_size: {}\n, nb_attention_blocks: {}\n, fnn_size: {}\n'.format(
params['dropout_rate'], params['nb_cnn2d_filt'], params['f_pool_size'], params['t_pool_size'], params['rnn_size'], params['nb_self_attn_layers'],
params['fnn_size']))
if not params['predict_tdoa']:
if vid_data_in is not None:
summary(model, [data_in, vid_data_in])
else:
summary(model, data_in)
# Dump results in DCASE output format for calculating final scores
dcase_output_val_folder = os.path.join(params['dcase_output_dir'], '{}_{}_val'.format(unique_name, strftime("%Y%m%d%H%M%S", gmtime())))
cls_feature_class.delete_and_create_folder(dcase_output_val_folder)
log_string('Dumping recording-wise val results in: {}'.format(dcase_output_val_folder))
if params['predict_tdoa']:
criterion_tdoa = TdoaLoss(fs=params['fs'], max_tau=params['max_tau'], tracks=params['tracks'])
else:
criterion_tdoa = None
# Initialize evaluation metric class
score_obj = ComputeSELDResults(params)
# start training
best_val_epoch = -1
best_ER, best_F, best_LE, best_LR, best_seld_scr, best_dist_err, best_rel_dist_err = 1., 0., 180., 0., 9999, 999999., 999999.
patience_cnt = 0
nb_epoch = 2 if params['quick_test'] else params['nb_epochs']
model_parameters = [
(name, p) for (name, p) in model.named_parameters() if not name.startswith('q')]
no_decay = ['bias', 'norm', 'Norm', 'cls', 'pos']
# Apply weight decay to all layers, except biases, normalization layers and and learnable tokens
optimizer_grouped_parameters = [
{'params': [p for n, p in model_parameters if not any(
nd in n for nd in no_decay)], 'weight_decay': params['weight_decay']},
{'params': [p for n, p in model_parameters if any(
nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = optim.AdamW(optimizer_grouped_parameters, lr=params['lr'])
scheduler = optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=nb_epoch, eta_min=params['final_lr'])
if not params['predict_tdoa']:
scheduler = GradualWarmupScheduler(optimizer, multiplier=1, total_epoch=params['warmup'], after_scheduler=scheduler)
optimizer.zero_grad()
optimizer.step()
if params['multi_accdoa'] is True:
criterion = seldnet_model.MSELoss_ADPIT(relative_dist=params['relative_dist'], no_dist=params['no_dist'])
else:
criterion = nn.MSELoss()
# initialize validation scores to nan
val_ER, val_F, val_LE, val_dist_err, val_rel_dist_err, val_LR, val_seld_scr, classwise_val_scr = np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan
val_time = np.nan
val_loss = np.nan
for epoch_cnt in range(nb_epoch):
# ---------------------------------------------------------------------
# Evaluate on unseen test data
# ---------------------------------------------------------------------
start_time = time.time()
train_loss = train_epoch(data_gen_train, optimizer, model, criterion, params, device, criterion_tdoa)
scheduler.step()
train_time = time.time() - start_time
if params['predict_tdoa']:
log_string("saving TDOA model")
torch.save(model.state_dict(), model_name_final)
# ---------------------------------------------------------------------
# VALIDATION
# ---------------------------------------------------------------------
if (epoch_cnt > 0 and epoch_cnt % params['eval_freq'] == 0) or epoch_cnt == 0 or epoch_cnt == nb_epoch-1:
start_time = time.time()
#device = torch.device('cpu')
#model = model.to(device)
val_loss = test_epoch(data_gen_val, model, criterion, dcase_output_val_folder, params, device, criterion_tdoa)
# Calculate the DCASE 2021 metrics - Location-aware detection and Class-aware localization scores
val_ER, val_F, val_LE, val_dist_err, val_rel_dist_err, val_LR, val_seld_scr, classwise_val_scr = score_obj.get_SELD_Results(dcase_output_val_folder)
val_time = time.time() - start_time
# Save model if F-score is good
if val_F >= best_F:
best_val_epoch, best_ER, best_F, best_LE, best_LR, best_seld_scr, best_dist_err = epoch_cnt, val_ER, val_F, val_LE, val_LR, val_seld_scr, val_dist_err
best_rel_dist_err = val_rel_dist_err
torch.save(model.state_dict(), model_name)
patience_cnt = 0
else:
patience_cnt += params['eval_freq']
if epoch_cnt == nb_epoch - 1:
log_string("saving final model")
torch.save(model.state_dict(), model_name_final)
# Print stats
log_string(
'epoch: {}, time: {:0.2f}/{:0.2f}, '
'train_loss: {:0.4f}, val_loss: {:0.4f}, '
'F/AE/Dist_err/Rel_dist_err/SELD: {}, '
'best_val_epoch: {} {}'.format(
epoch_cnt, train_time, val_time,
train_loss, val_loss,
'{:0.2f}/{:0.2f}/{:0.2f}/{:0.2f}/{:0.2f}'.format(val_F, val_LE, val_dist_err, val_rel_dist_err, val_seld_scr),
best_val_epoch,
'({:0.2f}/{:0.2f}/{:0.2f}/{:0.2f}/{:0.2f})'.format( best_F, best_LE, best_dist_err, best_rel_dist_err, best_seld_scr))
)
if patience_cnt > params['patience']:
break
# ---------------------------------------------------------------------
# Evaluate on unseen test data
# ---------------------------------------------------------------------
# don't load best model, this is cherry picking
log_string('Not loading best model weights, using final model weights instead')
#log_string('Load best model weights')
#model.load_state_dict(torch.load(model_name, map_location='cpu'))
log_string('Loading unseen test dataset:')
data_gen_test = cls_data_generator.DataGenerator(
params=params, split=test_splits[split_cnt], shuffle=False, per_file=True,
)
# Dump results in DCASE output format for calculating final scores
dcase_output_test_folder = os.path.join(params['dcase_output_dir'], '{}_{}_test'.format(unique_name, strftime("%Y%m%d%H%M%S", gmtime())))
cls_feature_class.delete_and_create_folder(dcase_output_test_folder)
log_string('Dumping recording-wise test results in: {}'.format(dcase_output_test_folder))
test_loss = test_epoch(data_gen_test, model, criterion, dcase_output_test_folder, params, device, criterion_tdoa)
use_jackknife=True
test_ER, test_F, test_LE, test_dist_err, test_rel_dist_err, test_LR, test_seld_scr, classwise_test_scr = score_obj.get_SELD_Results(dcase_output_test_folder, is_jackknife=use_jackknife )
log_string('SELD score (early stopping metric): {:0.2f} {}'.format(test_seld_scr[0] if use_jackknife else test_seld_scr, '[{:0.2f}, {:0.2f}]'.format(test_seld_scr[1][0], test_seld_scr[1][1]) if use_jackknife else ''))
log_string('SED metrics: F-score: {:0.1f} {}'.format(100* test_F[0] if use_jackknife else 100* test_F, '[{:0.2f}, {:0.2f}]'.format(100* test_F[1][0], 100* test_F[1][1]) if use_jackknife else ''))
log_string('DOA metrics: Angular error: {:0.1f} {}'.format(test_LE[0] if use_jackknife else test_LE, '[{:0.2f} , {:0.2f}]'.format(test_LE[1][0], test_LE[1][1]) if use_jackknife else ''))
log_string('Distance metrics: {:0.2f} {}'.format(test_dist_err[0] if use_jackknife else test_dist_err, '[{:0.2f} , {:0.2f}]'.format(test_dist_err[1][0], test_dist_err[1][1]) if use_jackknife else ''))
log_string('Relative Distance metrics: {:0.2f} {}'.format(test_rel_dist_err[0] if use_jackknife else test_rel_dist_err, '[{:0.2f} , {:0.2f}]'.format(test_rel_dist_err[1][0], test_rel_dist_err[1][1]) if use_jackknife else ''))
if params['average']=='macro':
log_string('Classwise results on unseen test data')
log_string('Class\tF\tAE\tdist_err\treldist_err\tSELD_score')
for cls_cnt in range(params['unique_classes']):
log_string('{}\t{:0.2f} {}\t{:0.2f} {}\t{:0.2f} {}\t{:0.2f} {}\t{:0.2f} {}'.format(
cls_cnt,
classwise_test_scr[0][1][cls_cnt] if use_jackknife else classwise_test_scr[1][cls_cnt],
'[{:0.2f}, {:0.2f}]'.format(classwise_test_scr[1][1][cls_cnt][0],
classwise_test_scr[1][1][cls_cnt][1]) if use_jackknife else '',
classwise_test_scr[0][2][cls_cnt] if use_jackknife else classwise_test_scr[2][cls_cnt],
'[{:0.2f}, {:0.2f}]'.format(classwise_test_scr[1][2][cls_cnt][0],
classwise_test_scr[1][2][cls_cnt][1]) if use_jackknife else '',
classwise_test_scr[0][3][cls_cnt] if use_jackknife else classwise_test_scr[3][cls_cnt],
'[{:0.2f}, {:0.2f}]'.format(classwise_test_scr[1][3][cls_cnt][0],
classwise_test_scr[1][3][cls_cnt][1]) if use_jackknife else '',
classwise_test_scr[0][4][cls_cnt] if use_jackknife else classwise_test_scr[4][cls_cnt],
'[{:0.2f}, {:0.2f}]'.format(classwise_test_scr[1][4][cls_cnt][0],
classwise_test_scr[1][4][cls_cnt][1]) if use_jackknife else '',
classwise_test_scr[0][6][cls_cnt] if use_jackknife else classwise_test_scr[6][cls_cnt],
'[{:0.2f}, {:0.2f}]'.format(classwise_test_scr[1][6][cls_cnt][0],
classwise_test_scr[1][6][cls_cnt][1]) if use_jackknife else ''))
LOG_FOUT.close()
if params['mode'] == 'eval':
print('Loading evaluation dataset:')
data_gen_eval = cls_data_generator.DataGenerator(
params=params, shuffle=False, per_file=True, is_eval=True)
model, data_in, vid_data_in, data_out = get_model_and_sizes(params, data_gen_eval, device)
print('Load final model weights from:' + params['pretrained_model_weights'])
model.load_state_dict(torch.load(params['pretrained_model_weights'], map_location='cpu'))
# Dump results in DCASE output format for calculating final scores
loc_output = 'multiaccdoa' if params['multi_accdoa'] else 'accdoa'
dcase_output_test_folder = os.path.join(params['dcase_output_dir'], '{}_{}_eval'.format(params['pretrained_model_weights'], strftime("%Y%m%d%H%M%S", gmtime())))
cls_feature_class.delete_and_create_folder(dcase_output_test_folder)
print('Dumping recording-wise eval results in: {}'.format(dcase_output_test_folder))
eval_epoch(data_gen_eval, model, dcase_output_test_folder, params, device)
if __name__ == "__main__":
try:
sys.exit(main(sys.argv))
except (ValueError, IOError) as e:
sys.exit(e)