-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathseldnet_model.py
343 lines (284 loc) · 16.3 KB
/
seldnet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# The SELDnet architecture
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from IPython import embed
class MSELoss_ADPIT(object):
def __init__(self, relative_dist=False, no_dist=False, visual_loss=False):
super().__init__()
self._each_loss = nn.MSELoss(reduction='none')
self.relative_dist = relative_dist
self.no_dist = no_dist
self.visual_loss = visual_loss
self.eps = 0.001
# relevant classes are [0 -female speech, 1-male speech, 2-clapping, 4-laugh, 6-footsteps, 9-music instrument]
self.visual_classes = [0, 1, 2, 4, 6, 9]
def _each_calc(self, output, target):
loss = self._each_loss(output, target)
if self.no_dist:
# don't train on distances at all
loss[:, :, 3] = 0.
loss[:, :, 7] = 0.
loss[:, :, 11] = 0.
elif self.relative_dist:
# scale loss with 1 / d
# distance indices are 3, 7, 11
# only scale loss for distances > 0
loss[:, :, 3] = torch.where(target[:, :, 3] > 0., loss[:, :, 3] / (target[:, :, 3] + self.eps), loss[:, :, 3])
loss[:, :, 7] = torch.where(target[:, :, 7] > 0., loss[:, :, 7] / (target[:, :, 7] + self.eps), loss[:, :, 7])
loss[:, :, 11] = torch.where(target[:, :, 11] > 0., loss[:, :, 11] / (target[:, :, 11] + self.eps), loss[:, :, 11])
if self.visual_loss:
# distance indices are 3, 7, 11. Class is active if distance > 0
# if class is not active, set loss=0 (we do not want to train on non-active classes)
loss[:, :, 3] = torch.where(target[:, :, 3] == 0., 0., loss[:, :, 3])
loss[:, :, 7] = torch.where(target[:, :, 7] == 0., 0., loss[:, :, 7])
loss[:, :, 11] = torch.where(target[:, :, 11] == 0., 0., loss[:, :, 11])
# select only visual classes
loss = loss[:, :, :, self.visual_classes]
return loss.mean(dim=(2)) # class-wise frame-level
def __call__(self, output, target):
"""
Auxiliary Duplicating Permutation Invariant Training (ADPIT) for 13 (=1+6+6) possible combinations
Args:
output: [batch_size, frames, num_track*num_axis*num_class=3*3*12]
target: [batch_size, frames, num_track_dummy=6, num_axis=4, num_class=12]
Return:
loss: scalar
"""
target_A0 = target[:, :, 0, 0:1, :] * target[:, :, 0, 1:, :] # A0, no ov from the same class, [batch_size, frames, num_axis(act)=1, num_class=12] * [batch_size, frames, num_axis(XYZD)=4, num_class=12]
target_B0 = target[:, :, 1, 0:1, :] * target[:, :, 1, 1:, :] # B0, ov with 2 sources from the same class
target_B1 = target[:, :, 2, 0:1, :] * target[:, :, 2, 1:, :] # B1
target_C0 = target[:, :, 3, 0:1, :] * target[:, :, 3, 1:, :] # C0, ov with 3 sources from the same class
target_C1 = target[:, :, 4, 0:1, :] * target[:, :, 4, 1:, :] # C1
target_C2 = target[:, :, 5, 0:1, :] * target[:, :, 5, 1:, :] # C2
target_A0A0A0 = torch.cat((target_A0, target_A0, target_A0), 2) # 1 permutation of A (no ov from the same class), [batch_size, frames, num_track*num_axis=3*4, num_class=12]
target_B0B0B1 = torch.cat((target_B0, target_B0, target_B1), 2) # 6 permutations of B (ov with 2 sources from the same class)
target_B0B1B0 = torch.cat((target_B0, target_B1, target_B0), 2)
target_B0B1B1 = torch.cat((target_B0, target_B1, target_B1), 2)
target_B1B0B0 = torch.cat((target_B1, target_B0, target_B0), 2)
target_B1B0B1 = torch.cat((target_B1, target_B0, target_B1), 2)
target_B1B1B0 = torch.cat((target_B1, target_B1, target_B0), 2)
target_C0C1C2 = torch.cat((target_C0, target_C1, target_C2), 2) # 6 permutations of C (ov with 3 sources from the same class)
target_C0C2C1 = torch.cat((target_C0, target_C2, target_C1), 2)
target_C1C0C2 = torch.cat((target_C1, target_C0, target_C2), 2)
target_C1C2C0 = torch.cat((target_C1, target_C2, target_C0), 2)
target_C2C0C1 = torch.cat((target_C2, target_C0, target_C1), 2)
target_C2C1C0 = torch.cat((target_C2, target_C1, target_C0), 2)
output = output.reshape(output.shape[0], output.shape[1], target_A0A0A0.shape[2], target_A0A0A0.shape[3]) # output is set the same shape of target, [batch_size, frames, num_track*num_axis=3*4, num_class=12]
pad4A = target_B0B0B1 + target_C0C1C2
pad4B = target_A0A0A0 + target_C0C1C2
pad4C = target_A0A0A0 + target_B0B0B1
loss_0 = self._each_calc(output, target_A0A0A0 + pad4A) # padded with target_B0B0B1 and target_C0C1C2 in order to avoid to set zero as target
loss_1 = self._each_calc(output, target_B0B0B1 + pad4B) # padded with target_A0A0A0 and target_C0C1C2
loss_2 = self._each_calc(output, target_B0B1B0 + pad4B)
loss_3 = self._each_calc(output, target_B0B1B1 + pad4B)
loss_4 = self._each_calc(output, target_B1B0B0 + pad4B)
loss_5 = self._each_calc(output, target_B1B0B1 + pad4B)
loss_6 = self._each_calc(output, target_B1B1B0 + pad4B)
loss_7 = self._each_calc(output, target_C0C1C2 + pad4C) # padded with target_A0A0A0 and target_B0B0B1
loss_8 = self._each_calc(output, target_C0C2C1 + pad4C)
loss_9 = self._each_calc(output, target_C1C0C2 + pad4C)
loss_10 = self._each_calc(output, target_C1C2C0 + pad4C)
loss_11 = self._each_calc(output, target_C2C0C1 + pad4C)
loss_12 = self._each_calc(output, target_C2C1C0 + pad4C)
loss_min = torch.min(
torch.stack((loss_0,
loss_1,
loss_2,
loss_3,
loss_4,
loss_5,
loss_6,
loss_7,
loss_8,
loss_9,
loss_10,
loss_11,
loss_12), dim=0),
dim=0).indices
loss = (loss_0 * (loss_min == 0) +
loss_1 * (loss_min == 1) +
loss_2 * (loss_min == 2) +
loss_3 * (loss_min == 3) +
loss_4 * (loss_min == 4) +
loss_5 * (loss_min == 5) +
loss_6 * (loss_min == 6) +
loss_7 * (loss_min == 7) +
loss_8 * (loss_min == 8) +
loss_9 * (loss_min == 9) +
loss_10 * (loss_min == 10) +
loss_11 * (loss_min == 11) +
loss_12 * (loss_min == 12)).mean()
return loss
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)):
super().__init__()
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
self.bn = nn.BatchNorm2d(out_channels)
def forward(self, x):
x = F.relu(self.bn(self.conv(x)))
return x
class SeldModel(torch.nn.Module):
def __init__(self, in_feat_shape, out_shape, params, in_vid_feat_shape=None):
super().__init__()
self.nb_classes = params['unique_classes']
self.params=params
self.conv_block_list = nn.ModuleList()
if len(params['f_pool_size']):
for conv_cnt in range(len(params['f_pool_size'])):
self.conv_block_list.append(ConvBlock(in_channels=params['nb_cnn2d_filt'] if conv_cnt else in_feat_shape[1], out_channels=params['nb_cnn2d_filt']))
self.conv_block_list.append(nn.MaxPool2d((params['t_pool_size'][conv_cnt], params['f_pool_size'][conv_cnt])))
self.conv_block_list.append(nn.Dropout2d(p=params['dropout_rate']))
self.gru_input_dim = params['nb_cnn2d_filt'] * int(np.floor(in_feat_shape[-1] / np.prod(params['f_pool_size'])))
self.gru = torch.nn.GRU(input_size=self.gru_input_dim, hidden_size=params['rnn_size'],
num_layers=params['nb_rnn_layers'], batch_first=True,
dropout=params['dropout_rate'], bidirectional=True)
self.mhsa_block_list = nn.ModuleList()
self.layer_norm_list = nn.ModuleList()
for mhsa_cnt in range(params['nb_self_attn_layers']):
self.mhsa_block_list.append(nn.MultiheadAttention(embed_dim=self.params['rnn_size'], num_heads=self.params['nb_heads'], dropout=self.params['dropout_rate'], batch_first=True))
self.layer_norm_list.append(nn.LayerNorm(self.params['rnn_size']))
# fusion layers
if in_vid_feat_shape is not None:
self.visual_embed_to_d_model = nn.Linear(in_features = int(in_vid_feat_shape[2]*in_vid_feat_shape[3]), out_features = self.params['rnn_size'] )
self.transformer_decoder_layer = nn.TransformerDecoderLayer(d_model=self.params['rnn_size'], nhead=self.params['nb_heads'], batch_first=True)
self.transformer_decoder = nn.TransformerDecoder(self.transformer_decoder_layer, num_layers=self.params['nb_transformer_layers'])
self.fnn_list = torch.nn.ModuleList()
if params['nb_fnn_layers']:
for fc_cnt in range(params['nb_fnn_layers']):
self.fnn_list.append(nn.Linear(params['fnn_size'] if fc_cnt else self.params['rnn_size'], params['fnn_size'], bias=True))
self.fnn_list.append(nn.Linear(params['fnn_size'] if params['nb_fnn_layers'] else self.params['rnn_size'], out_shape[-1], bias=True))
self.doa_act = nn.Tanh()
self.dist_act = nn.ReLU()
def forward(self, x, vid_feat=None):
"""input: (batch_size, mic_channels, time_steps, mel_bins)"""
for conv_cnt in range(len(self.conv_block_list)):
x = self.conv_block_list[conv_cnt](x)
x = x.transpose(1, 2).contiguous()
x = x.view(x.shape[0], x.shape[1], -1).contiguous()
(x, _) = self.gru(x)
x = torch.tanh(x)
x = x[:, :, x.shape[-1]//2:] * x[:, :, :x.shape[-1]//2]
for mhsa_cnt in range(len(self.mhsa_block_list)):
x_attn_in = x
x, _ = self.mhsa_block_list[mhsa_cnt](x_attn_in, x_attn_in, x_attn_in)
x = x + x_attn_in
x = self.layer_norm_list[mhsa_cnt](x)
if vid_feat is not None:
vid_feat = vid_feat.view(vid_feat.shape[0], vid_feat.shape[1], -1) # b x 50 x 49
vid_feat = self.visual_embed_to_d_model(vid_feat)
x = self.transformer_decoder(x, vid_feat)
for fnn_cnt in range(len(self.fnn_list) - 1):
x = self.fnn_list[fnn_cnt](x)
doa = self.fnn_list[-1](x)
return doa
class MySeldModel(torch.nn.Module):
def __init__(self, in_feat_shape, out_shape, params, in_vid_feat_shape=None, n_channels=4, n_delays=None):
super().__init__()
self.n_channels = n_channels
self.nb_classes = params['unique_classes']
self.params=params
self.conv_block_list = nn.ModuleList()
if len(params['f_pool_size']):
for conv_cnt in range(len(params['f_pool_size'])):
self.conv_block_list.append(ConvBlock(in_channels=params['nb_cnn2d_filt'] if conv_cnt else n_channels, out_channels=params['nb_cnn2d_filt']))
self.conv_block_list.append(nn.MaxPool2d((params['t_pool_size'][conv_cnt], params['f_pool_size'][conv_cnt])))
self.conv_block_list.append(nn.Dropout2d(p=params['dropout_rate']))
self.gru_input_dim = params['nb_cnn2d_filt'] * int(np.floor(in_feat_shape[-1] / np.prod(params['f_pool_size'])))
self.gru = torch.nn.GRU(input_size=self.gru_input_dim, hidden_size=params['rnn_size'],
num_layers=params['nb_rnn_layers'], batch_first=True,
dropout=params['dropout_rate'], bidirectional=True)
self.mhsa_block_list = nn.ModuleList()
self.layer_norm_list = nn.ModuleList()
for mhsa_cnt in range(params['nb_self_attn_layers']):
self.mhsa_block_list.append(nn.MultiheadAttention(embed_dim=self.params['rnn_size'], num_heads=self.params['nb_heads'], dropout=self.params['dropout_rate'], batch_first=True))
self.layer_norm_list.append(nn.LayerNorm(self.params['rnn_size']))
# fusion layers
if in_vid_feat_shape is not None:
self.visual_embed_to_d_model = nn.Linear(in_features = int(in_vid_feat_shape[2]*in_vid_feat_shape[3]), out_features = self.params['rnn_size'] )
self.transformer_decoder_layer = nn.TransformerDecoderLayer(d_model=self.params['rnn_size'], nhead=self.params['nb_heads'], batch_first=True)
self.transformer_decoder = nn.TransformerDecoder(self.transformer_decoder_layer, num_layers=self.params['nb_transformer_layers'])
# GCC-PHAT relation network
self.mic_token_dim = 8
self.n_gcc = int(n_channels * (n_channels - 1) / 2)
self.mic_tokens = nn.Parameter(torch.randn(1, self.n_gcc, 1, self.mic_token_dim))
self.n_gcc = n_channels * (n_channels - 1) / 2
if n_delays is None:
n_delays = in_feat_shape[-1] # this is currently = 64. TODO: 2*6=12 delays per correlation
self.rel1 = nn.Sequential(
nn.Linear(n_delays, n_delays * 8),
nn.LayerNorm(n_delays * 8),
nn.GELU(),
nn.Linear(n_delays * 8, n_delays * 16),
nn.LayerNorm(n_delays * 16),
nn.GELU(),
)
self.avg_pool = nn.AvgPool2d((params['t_pool_size'][0], 1)) # pool over 5 time samples, (5,1)
self.rel2 = nn.Sequential(
nn.Linear(n_delays * 16 + self.mic_token_dim, n_delays * 32),
nn.LayerNorm(n_delays * 32),
nn.GELU(),
nn.Linear(n_delays * 32, n_delays * 64),
nn.LayerNorm(n_delays * 64),
nn.GELU(),
)
self.rel3 = nn.Sequential(
nn.Linear(n_delays * 64, n_delays * 64),
nn.LayerNorm(n_delays * 64),
nn.GELU(),
)
#fully connected for predictions
self.ff = nn.Sequential(
nn.Linear(self.params['rnn_size']+n_delays*64, 256),
nn.LayerNorm(256),
nn.GELU(),
nn.Linear(256, out_shape[-1])
)
self.doa_act = nn.Tanh()
self.dist_act = nn.ReLU()
def forward(self, x, vid_feat=None):
"""input: (batch_size, mic_channels, time_steps, mel_bins)"""
# separate gcc and mel features
gcc = x[:, self.n_channels:] # gcc correlations
x = x[:, :self.n_channels] # mel spectrograms
for conv_cnt in range(len(self.conv_block_list)):
x = self.conv_block_list[conv_cnt](x)
x = x.transpose(1, 2).contiguous()
x = x.view(x.shape[0], x.shape[1], -1).contiguous()
(x, _) = self.gru(x)
x = torch.tanh(x)
x = x[:, :, x.shape[-1]//2:] * x[:, :, :x.shape[-1]//2]
for mhsa_cnt in range(len(self.mhsa_block_list)):
x_attn_in = x
x, _ = self.mhsa_block_list[mhsa_cnt](x_attn_in, x_attn_in, x_attn_in)
x = x + x_attn_in
x = self.layer_norm_list[mhsa_cnt](x)
if vid_feat is not None:
vid_feat = vid_feat.view(vid_feat.shape[0], vid_feat.shape[1], -1) # b x 50 x 49
vid_feat = self.visual_embed_to_d_model(vid_feat)
x = self.transformer_decoder(x, vid_feat)
# relation network
gcc = self.rel1(gcc)
gcc = self.avg_pool(gcc)
# append mic tokens to gcc features
bs, _, n_time, _ = gcc.shape
mic_tokens = self.mic_tokens.repeat(bs, 1, n_time, 1)
gcc = torch.cat((gcc, mic_tokens), dim=-1)
gcc = self.rel2(gcc)
gcc = torch.max(gcc, dim=1)[0]
gcc = self.rel3(gcc)
x = torch.cat((x, gcc), dim=-1)
doa = self.ff(x)
return doa
# the below-commented code applies tanh for doa and relu for distance estimates respectively in multi-accdoa scenarios.
# they can be uncommented and used, but there is no significant changes in the results.
#doa = doa.reshape(doa.size(0), doa.size(1), 3, 4, 13)
#doa1 = doa[:, :, :, :3, :]
#dist = doa[:, :, :, 3:, :]
#doa1 = self.doa_act(doa1)
#dist = self.dist_act(dist)
#doa2 = torch.cat((doa1, dist), dim=3)
#doa2 = doa2.reshape((doa.size(0), doa.size(1), -1))
#return doa2