-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathlfu_cache.py
127 lines (87 loc) · 3.91 KB
/
lfu_cache.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""
https://leetcode.com/problems/lfu-cache/
Design and implement a data structure for a Least Frequently Used (LFU) cache.
Implement the LFUCache class:
LFUCache(int capacity) Initializes the object with the capacity of the data structure.
int get(int key) Gets the value of the key if the key exists in the cache. Otherwise, returns -1.
void put(int key, int value) Update the value of the key if present, or inserts the key if not
already present. When the cache reaches its capacity, it should invalidate and remove the least
frequently used key before inserting a new item. For this problem, when there is a tie (i.e., two
or more keys with the same frequency), the least recently used key would be invalidated.
To determine the least frequently used key, a use counter is maintained for each key in the cache.
The key with the smallest use counter is the least frequently used key.
When a key is first inserted into the cache, its use counter is set to 1 (due to the put operation).
The use counter for a key in the cache is incremented either a get or put operation is called on it.
Example 1:
Input
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]
Explanation
// cnt(x) = the use counter for key x
// cache=[] will show the last used order for tiebreakers (leftmost element is most recent)
LFUCache lfu = new LFUCache(2);
lfu.put(1, 1); // cache=[1,_], cnt(1)=1
lfu.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1
lfu.get(1); // return 1
// cache=[1,2], cnt(2)=1, cnt(1)=2
lfu.put(3, 3); // 2 is the LFU key because cnt(2)=1 is the smallest, invalidate 2.
// cache=[3,1], cnt(3)=1, cnt(1)=2
lfu.get(2); // return -1 (not found)
lfu.get(3); // return 3
// cache=[3,1], cnt(3)=2, cnt(1)=2
lfu.put(4, 4); // Both 1 and 3 have the same cnt, but 1 is LRU, invalidate 1.
// cache=[4,3], cnt(4)=1, cnt(3)=2
lfu.get(1); // return -1 (not found)
lfu.get(3); // return 3
// cache=[3,4], cnt(4)=1, cnt(3)=3
lfu.get(4); // return 4
// cache=[3,4], cnt(4)=2, cnt(3)=3
Constraints:
0 <= capacity, key, value <= 104
At most 105 calls will be made to get and put.
Follow up: Could you do both operations in O(1) time complexity?
"""
from collections import defaultdict, OrderedDict
class Node:
def __init__(self, key, val, freq):
self.val = val
self.key = key
self.freq = freq
class LFUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.min_freq = None
# hashmap for key-node
self.key2node = dict()
# doubly linked hashmap
self.freq2node = defaultdict(OrderedDict)
def get(self, key: int) -> int:
if key not in self.key2node:
return -1
node = self.key2node[key]
del self.freq2node[node.freq][key]
if not self.freq2node[node.freq]:
del self.freq2node[node.freq]
node.freq += 1
self.freq2node[node.freq][key] = node
if not self.freq2node[self.min_freq]:
self.min_freq += 1
return node.val
def put(self, key: int, value: int) -> None:
if not self.capacity:
return
if key in self.key2node:
self.key2node[key].val = value
_ = self.get(key)
return
if len(self.key2node) == self.capacity:
k, node = self.freq2node[self.min_freq].popitem(last=False)
del self.key2node[k]
self.freq2node[1][key] = self.key2node[key] = Node(key, value, 1)
self.min_freq = 1
# Your LFUCache object will be instantiated and called as such:
# obj = LFUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)