AWS Panorama uses Amazon SageMaker Neo to compile your machine learning models for AWS Panorama Appliances. Here is a list of commonly used computer vision models that have been tested with Amazon SageMaker Neo for compilation. You can use these models for learning and demo purposes or for developing your machine learning applications.
- resnet50
- yolov2
- yolov2_tiny
- yolov3_416
- yolov3_tiny
- DenseNet201
- GoogLeNet
- InceptionV3
- MobileNet0.75
- MobileNet1.0
- MobileNetV2_0.5
- MobileNetV2_1.0
- MobileNetV3_Large
- MobileNetV3_Small
- ResNeSt50
- ResNet18_v1
- ResNet18_v2
- ResNet50_v1
- ResNet50_v2
- SENet_154
- SE_ResNext50_32x4d
- SqueezeNet1.0
- SqueezeNet1.1
- Xception
- darknet53
- resnet18_v1b_0.89
- resnet50_v1d_0.11
- resnet50_v1d_0.86
- ssd_512_mobilenet1.0_coco
- ssd_512_mobilenet1.0_voc
- ssd_512_resnet50_v1_coco
- yolo3_darknet53_coco
- yolo3_mobilenet1.0_coco
- DenseNet121
- DenseNet201
- mobilenet_v1
- mobilenet_v2
- resnet50_v1
- resnet50_v2
- mobilenetv2-1.0
- resnet152v1
- resnet18v1
- resnet18v2
- resnet50v1
- resnet50v2
- squeezenet1.1
- densenet121
- resnet152
- resnet18
- resnet50
- squeezenet1.0
- squeezenet1.1
- vgg16_bn
- yolov4
- faster r-cnn resnet-50 fpn
- mask r-cnn resnet-50 fpn
- DenseNet121
- DenseNet201
- MobileNet
- MobileNetV2
- NASNetLarge
- NASNetMobile
- ResNet101
- ResNet101V2
- ResNet152
- ResNet152V2
- ResNet50
- ResNet50V2
- Xception
- mobilenet100_v1
- mobilenet100_v2.0
- mobilenet130_v2
- mobilenet140_v2
- resnet50_v1.5
- resnet50_v2
- squeezenet
- faster_rcnn_inception_resnet_v2_atrous_coco
- faster_rcnn_inception_resnet_v2_atrous_lowproposals_coco
- faster_rcnn_inception_v2_coco
- faster_rcnn_nas
- faster_rcnn_nas_lowproposals_coco
- faster_rcnn_resnet101_coco
- faster_rcnn_resnet101_lowproposals_coco
- faster_rcnn_resnet50_coco
- faster_rcnn_resnet50_lowproposals_coco
- mask_rcnn_inception_resnet_v2_atrous_coco
- mask_rcnn_resnet101_atrous_coco
- mask_rcnn_resnet50_atrous_coco
- rfcn_resnet101_coco
- ssd_mobilenet_v1_0.75_depth_coco
- ssd_mobilenet_v1_0.75_depth_quantized_coco
- ssd_mobilenet_v1_coco
- ssd_mobilenet_v1_fpn_coco
- ssd_mobilenet_v1_ppn_coco
- ssd_mobilenet_v2_coco
- densenet_2018_04_27
- inception_resnet_v2_2018_04_27
- inception_v3_2018_04_27
- mnasnet_0.5_224_09_07_2018
- mnasnet_1.0_224_09_07_2018
- mnasnet_1.3_224_09_07_2018
- mobilenet_v1_0.25_128
- mobilenet_v1_0.25_224
- mobilenet_v1_0.5_128
- mobilenet_v1_0.5_224
- mobilenet_v1_0.75_128
- mobilenet_v1_0.75_224
- mobilenet_v1_1.0_128
- mobilenet_v1_1.0_192
- mobilenet_v2_1.0_224
- resnet_v2_101
- squeezenet_2018_04_27