-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathinference.py
246 lines (201 loc) · 8.41 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from tqdm import tqdm
import json
import lmdb
import random
from PIL import Image, ImageFont, ImageDraw
import io
from glob import glob
import argparse
import os
from sconf import Config
import shutil
from build_dataset.build_meta4train import save_lmdb
from train import setup_transforms, load_pretrain_vae_model
from utils import Logger
from datasets.lmdbutils import (load_lmdb, load_json, read_data_from_lmdb)
from model import generator_dispatch
import torch
from evaluator import Evaluator
from pathlib import Path
from datasets import get_fixedref_loader
def getCharList(root):
'''
getCharList
'''
charlist = []
for img_path in glob(root + '/*.jpg') + glob(root + '/*.png'):
ch = os.path.basename(img_path).split('.')[0]
charlist.append(ch)
return charlist
def getMetaDict(image_root_list, content_name, cr_mapping):
meta_dict = dict()
for idx, file_path in enumerate(image_root_list):
font_name = os.path.basename(file_path)
if font_name == content_name:
content_path = file_path
continue
all_ch_list = getCharList(file_path)
meta_dict[font_name] = {
"path": file_path,
"charlist": None
}
meta_dict[font_name]["charlist"] = all_ch_list
# adaptively choose the possible inference unicodes according to the style unicodes you have.
infer_unis = []
style_set = set(hex(ord(ch))[2:].upper() for ch in all_ch_list)
for uni in cr_mapping:
infer_unis.append(chr(int(uni, 16)))
meta_dict[content_name] = {
"path": content_path,
"charlist": None
}
meta_dict[content_name]["charlist"] = infer_unis
return meta_dict
def build_meta4build_dataset(meta_path, img_path_list, content_name, cr_mapping):
'''
build_meta4build_dataset
'''
out_dict_path = meta_path
out_dict = getMetaDict(img_path_list, content_name, cr_mapping)
with open(out_dict_path, 'w') as fout:
json.dump(out_dict, fout, indent=4, ensure_ascii=False)
print("dataset meta:", out_dict_path)
def build_testmeta4inference(target_name, target_root, content_name="kaiti_xiantu"):
'''
build_testmeta4inference
'''
meta_file = os.path.join(target_root, "dataset_meta.json")
save_path = os.path.join(target_root, "test.json")
avali_set = {}
with open(meta_file, 'r') as fin:
original_meta = json.load(fin)
target_ori_unis = original_meta[target_name]
# build test meta file
test_dict = {
"gen_fonts": [target_name],
"gen_unis": original_meta[content_name],
"ref_unis": target_ori_unis
}
with open(save_path, 'w') as fout:
json.dump(test_dict, fout, ensure_ascii=False, indent=4)
print("test metafile save to ", save_path)
return save_path, avali_set
def build_dataset4inference(target_img_path, meta_path, content_root, lmdb_path, json_path, cr_mapping):
'''
target_img_path: test image directory
content_root: content image directory
meta_path: {font1: {root: '/path/', 'charlist': [ch1, ch2, ch3..]}, font2: ....}
lmdb_path: lmdb directory
json_path: {font1: [uni1, uni2, uni3, ..], font2: [uni1, uni2, uni3, ...]}
'''
### START
img_path_list = [target_img_path] + [content_root]
content_name = os.path.basename(content_root)
build_meta4build_dataset(meta_path, img_path_list, content_name, cr_mapping)
with open(meta_path) as f:
fpc_meta = json.load(f)
valid_dict = save_lmdb(lmdb_path, fpc_meta)
with open(json_path, "w") as f:
json.dump(valid_dict, f)
print("lmdb_path:", lmdb_path)
print("test meta:", json_path)
def eval_ckpt(args, cfg, avail, target_root):
'''
eval_ckpt
'''
logger = Logger.get()
content_name = cfg.content_name
trn_transform, val_transform = setup_transforms(cfg)
env = load_lmdb(cfg.data_path)
env_get = lambda env, x, y, transform: transform(read_data_from_lmdb(env, f'{x}_{y}')['img'])
test_meta = load_json(args.test_meta)
g_kwargs = cfg.get('g_args', {})
g_cls = generator_dispatch()
gen = g_cls(1, cfg.C, 1, cfg, **g_kwargs)
weight = torch.load(args.weight)
if "generator_ema" in weight:
weight = weight["generator_ema"]
gen.load_state_dict(weight)
logger.info(f"load checkpoint from {args.weight}")
writer = None
gen.cuda()
evaluator = Evaluator(
env,
env_get,
cfg,
logger,
writer,
cfg["batch_size"],
val_transform,
content_name,
use_half=cfg.use_half
)
img_dir = Path(target_root)
ref_unis = test_meta["ref_unis"]
gen_unis = test_meta["gen_unis"]
gen_fonts = test_meta["gen_fonts"]
target_dict = {f: gen_unis for f in gen_fonts}
loader = get_fixedref_loader(env=env,
env_get=env_get,
target_dict=target_dict,
ref_unis=ref_unis,
cfg=cfg,
transform=val_transform,
num_workers=cfg.n_workers,
shuffle=False
)
component_objects = load_pretrain_vae_model(cfg.vae_pth, gen)
bs_component_embeddings = get_codebook_detach(component_objects, cfg["batch_size"])
with open(cfg.sim_path, 'r+') as file:
chars_sim = file.read()
chars_sim_dict = json.loads(chars_sim) # 将json格式文件转化为python的字典文件
logger.info("Save CV results to {} ...".format(img_dir))
saving_folder = evaluator.save_each_imgs(gen, loader, args.img_path,
learned_components=bs_component_embeddings,
chars_sim_dict=chars_sim_dict,
save_dir=target_root, reduction='mean')
def get_codebook_detach(component_embeddings, batch_size):
N, C = component_embeddings.size()
component_objects = torch.zeros(N, C).cuda()
component_objects = component_objects + component_embeddings # [N,C]
component_objects = component_objects.unsqueeze(0)
component_objects = component_objects.repeat(batch_size, 1, 1) # [B N C]
return component_objects.detach()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("config_paths", nargs="+", help="path to config.yaml")
parser.add_argument("--weight", help="path to weight to evaluate")
parser.add_argument("--content_font", help="path to content font")
parser.add_argument("--img_path", help="path of the your test img directory.")
parser.add_argument("--saving_root", help="saving directory.")
args = parser.parse_args()
cfg = Config(*args.config_paths, default="./cfgs/defaults.yaml")
target_folder = args.img_path # 目标图片路径
content_root = args.content_font # 内容图片路径
saving_root = args.saving_root # 保存推理结果的路径
content_name = os.path.basename(content_root) # 内容font的名称
target_name = os.path.basename(target_folder) # 目标font的名称
target_root = os.path.join(saving_root, target_name) # 存放生成的目标font的路径
with open(cfg.all_content_json, 'r') as f:
cr_mapping = json.load(f)
# create directory
os.makedirs(target_root, exist_ok=True)
# lmdb directory
lmdb_path = os.path.join(target_root, "lmdb")
if os.path.exists(lmdb_path):
shutil.rmtree(lmdb_path)
os.makedirs(lmdb_path, exist_ok=True)
# meta file
json_path = os.path.join(target_root, "dataset_meta.json")
meta_path = os.path.join(target_root, "ori_dataset_meta.json")
build_dataset4inference(target_folder, meta_path, content_root, lmdb_path, json_path, cr_mapping)
# test.json
save_path, avail = build_testmeta4inference(target_name, target_root, content_name)
args.test_meta = save_path
cfg.content_name = content_name
cfg.data_path = lmdb_path
print("======> Test Params:")
print("test meta:", args.test_meta)
print("content font:", cfg.content_name)
print("lmdb datasets:", cfg.data_path)
eval_ckpt(args, cfg, avail, target_root)