-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathevaluator.py
152 lines (127 loc) · 6.42 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from pathlib import Path
import torch
import numpy as np
import utils
import os
import tqdm
import cv2
from datasets import cyclize
from utils import Logger
from datasets import load_lmdb, read_data_from_lmdb
def torch_eval(val_fn):
@torch.no_grad()
def decorated(self, gen, *args, **kwargs):
gen.eval()
ret = val_fn(self, gen, *args, **kwargs)
gen.train()
return ret
return decorated
class Evaluator:
def __init__(self, env, env_get, cfg, logger, writer, batch_size, transform,
content_font, use_half=False):
# torch.backends.cudnn.benchmark = True
self.env = env
self.env_get = env_get
self.logger = logger
self.writer = writer
self.batch_size = batch_size
self.transform = transform
self.k_shot = cfg.kshot
self.content_font = content_font
self.use_half = use_half
self.size = cfg.input_size
def cp_validation(self, gen, cv_loaders, step, learned_components, chars_sim_dict, phase="fact", reduction='mean',
ext_tag=""):
"""
cp_validation
"""
# cv_loaders包含四个loader,
for tag, loader in cv_loaders.items():
self.comparable_val_saveimg(gen, loader, step, learned_components, chars_sim_dict,
tag=f"comparable_{tag}_{ext_tag}",
phase=phase, reduction=reduction)
@torch_eval
def comparable_val_saveimg(self, gen, loader, step, learned_components, chars_sim_dict, phase="fact",
tag='comparable', reduction='mean'):
n_row = loader.dataset.n_uni_per_font # 每个loader中未见过的字符数量
compare_batches = self.infer_loader(gen, loader, learned_components, chars_sim_dict, phase=phase,
reduction=reduction)
comparable_grid = utils.make_comparable_grid(*compare_batches[::-1], nrow=n_row)
self.writer.add_image(tag, comparable_grid, global_step=step)
return comparable_grid
@torch_eval
def infer_loader(self, gen, loader, learned_components, chars_sim_dict, phase, reduction="mean"):
# 分别对传入的loader进行推理,即验证当前模型的生成能力
outs = []
trgs = []
styles = []
for i, (style_ids, style_imgs, trg_ids, trg_unis, style_sample_index,
trg_sample_index, content_imgs, trg_uni, style_unis, *trg_imgs) in enumerate(loader):
# 对4类字符进行验证
out, _, _ = gen.infer(style_ids, style_imgs, style_sample_index, trg_ids, content_imgs,
learned_components, trg_uni, style_unis, chars_sim_dict, k_shot_tag=True,
reduction=reduction)
batch_size = out.shape[0]
out_images = out.detach().cpu().numpy()
out_duplicate = np.ones((batch_size * self.k_shot, 1, self.size, self.size))
for idx in range(batch_size):
for j in range(self.k_shot):
out_duplicate[idx * self.k_shot + j, ...] = out_images[idx, ...]
outs.append(torch.Tensor(out_duplicate))
for style_img in style_imgs:
style_duplicate = np.ones((1, 1, self.size, self.size))
style_duplicate[:, :, :, :] = style_img.unsqueeze(1).detach().cpu()
styles.append(torch.Tensor(style_duplicate))
if trg_imgs:
trg_images = trg_imgs[0].detach().cpu().numpy()
trg_duplicate = np.zeros((batch_size * self.k_shot, 1, self.size, self.size))
for idx in range(batch_size):
for j in range(self.k_shot):
trg_duplicate[idx * self.k_shot + j, ...] = trg_images[idx, ...]
trgs.append(torch.Tensor(trg_duplicate))
ret = (torch.cat(outs).float(),)
if trgs:
ret += (torch.cat(trgs).float(),)
ret += (torch.cat(styles).float(),)
return ret
def normalize(self, tensor, eps=1e-5):
""" Normalize tensor to [0, 1] """
# eps=1e-5 is same as make_grid in torchvision.
minv, maxv = tensor.min(), tensor.max()
tensor = (tensor - minv) / (maxv - minv + eps)
return tensor
@torch_eval
def save_each_imgs(self, gen, loader, ori_img_root, learned_components, chars_sim_dict, save_dir, reduction='mean'):
'''
save_each_imgs
'''
font_name = os.path.basename(save_dir)
output_folder = os.path.join(save_dir, 'images')
os.makedirs(output_folder, exist_ok=True)
ch_list_check = []
i = 0
while i < len(loader):
for i, (style_ids, style_imgs, trg_ids, trg_unis, style_uni, style_sample_index, trg_sample_index,
content_imgs, trg_uni, style_unis) in enumerate(loader):
print(i)
out, _, _ = gen.infer(style_ids, style_imgs, style_sample_index, trg_ids, content_imgs,
learned_components, trg_uni, style_unis, chars_sim_dict, k_shot_tag=True,
reduction=reduction)
dec_unis = trg_unis.detach().cpu().numpy()
style_dec_unis = style_uni.detach().cpu().numpy()
font_ids = trg_ids.detach().cpu().numpy()
images = out.detach().cpu() # [B, 1, 128, 128]
for idx, (dec_uni, font_id, image) in enumerate(zip(dec_unis, font_ids, images)):
font_name = loader.dataset.fonts[font_id] # name.ttf
uni = hex(dec_uni)[2:].upper().zfill(4)
ch = '\\u{:s}'.format(uni).encode().decode('unicode_escape')
image = self.normalize(image)
final_img = torch.permute(torch.clip(image * 255, min=0, max=255), (1, 2, 0)).cpu().numpy()
if final_img.shape[-1] == 1:
final_img = final_img.squeeze(-1) # [128, 128]
dst_path = os.path.join(output_folder, ch + '.png')
ch_list_check.append(ch)
cv2.imwrite(dst_path, final_img)
i += 1
print('num_saved_img: ', len(ch_list_check))
return output_folder