forked from KarthickPandianPV/logitech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathline_follower.py
executable file
·114 lines (94 loc) · 3.9 KB
/
line_follower.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/usr/bin/env python3
import rospy
import cv2
import numpy as np
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Image
from std_msgs.msg import Float32
from geometry_msgs.msg import Vector3
import math
def normalize_angle(angle):
"""
Normalize angle to the range [-180, 180] degrees.
"""
while angle > 180:
angle -= 360
while angle < -180:
angle += 360
return angle
class LineFollowerNode:
def __init__(self):
rospy.init_node('line_follower', anonymous=True)
# Subscribers
rospy.Subscriber('/usb_cam_node/image_raw', Image, self.camera_callback)
rospy.Subscriber('/sensors/orientation', Vector3, self.imu_callback)
# Publishers
self.angle_pub = rospy.Publisher('/line/angle_difference', Float32, queue_size=10)
self.image_pub = rospy.Publisher('/processed_image', Image, queue_size=10)
# Variables
self.yaw = 0.0 # IMU yaw
self.bridge = CvBridge()
def imu_callback(self, msg):
"""
Callback to handle IMU data and update yaw.
"""
self.yaw = msg.z # Assuming `orientation.z` is in degrees (0 to 360)
def camera_callback(self, msg):
"""
Callback to process camera image, detect line, and calculate angle difference.
"""
try:
# Convert ROS image to OpenCV image
cv_image = self.bridge.imgmsg_to_cv2(msg, "bgr8")
except CvBridgeError as e:
rospy.logerr(f"CvBridge Error: {e}")
return
# Preprocess the image
gray = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
_, binary = cv2.threshold(blurred, 100, 255, cv2.THRESH_BINARY_INV)
# Detect line using contours
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
# Find the largest contour (assuming it's the line)
largest_contour = max(contours, key=cv2.contourArea)
# Fit a line to the contour
[vx, vy, x, y] = cv2.fitLine(largest_contour, cv2.DIST_L2, 0, 0.01, 0.01)
line_angle = math.degrees(math.atan2(vy, vx))
# Normalize line angle to [0, 360]
if line_angle < 0:
line_angle += 360
# Calculate angle difference
angle_difference = normalize_angle(line_angle - self.yaw)
# Publish the angle difference
rospy.loginfo(f"Angle Difference: {angle_difference:.2f} degrees")
self.angle_pub.publish(angle_difference)
# Draw the line and yaw axis on the image
rows, cols = cv_image.shape[:2]
lefty = int((-x * vy / vx) + y)
righty = int(((cols - x) * vy / vx) + y)
cv2.line(cv_image, (cols - 1, righty), (0, lefty), (0, 255, 0), 2)
# Draw yaw axis
yaw_x = int(cols // 2 + 100 * math.cos(math.radians(self.yaw)))
yaw_y = int(rows // 2 - 100 * math.sin(math.radians(self.yaw)))
cv2.line(cv_image, (cols // 2, rows // 2), (yaw_x, yaw_y), (0, 0, 255), 2)
cv2.putText(cv_image, f"Yaw: {self.yaw:.1f} deg", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
# Debug: Check if the processed image is valid
rospy.loginfo("Publishing processed image.")
# Publish the processed image
self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))
# Optional: Display for debugging purposes
cv2.imshow("Line Detection", cv_image)
cv2.waitKey(1)
else:
rospy.logwarn("No line detected in the frame.")
def run(self):
rospy.spin()
if __name__ == '__main__':
try:
node = LineFollowerNode()
node.run()
except rospy.ROSInterruptException:
pass
finally:
cv2.destroyAllWindows()