-
Notifications
You must be signed in to change notification settings - Fork 0
/
about.html
executable file
·153 lines (149 loc) · 6.78 KB
/
about.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
<!DOCTYPE html>
<meta charset="utf-8">
<html>
<head>
<title>MASSIVE viewer</title>
<link rel="stylesheet" href="./css/bootstrap.min.css">
<link rel="stylesheet" href="./css/my.css">
<link rel="stylesheet" href="./css/bootstrap-slider.min.css">
<script src="./js/jquery-3.1.1.min.js"></script>
<script src="./js/d3.v3.js"></script>
<script src="./js/bootstrap.min.js"></script>
<script src="./js/d3-legend.min.js"></script>
<script src="./js/bootstrap-slider.min.js"></script>
<script src="https://d3js.org/d3-queue.v3.min.js"></script>
</head>
<header class="header">
<ul class="nav nav-tabs">
<li class="active"><a href="about.html"> About </a></li>
<li><a href="focused.php"> Focused View </a></li>
<li><a href="comparative.php"> Comparative View </a></li>
</ul>
</header>
<body>
<div class="container-fluid about">
<p>
<strong>This is for a website for explaining a novel methodology for
sensitivity analysis of agent-based simulation, MASSIVE
(Massively parallel Agent-based Simulations and Subsequent
Interactive Visualization-based Exploration).</strong> Employing a supercomputer,
MASSIVE performs a huge number of agent-based simulations
with a broad range of parameter settings and enables us to intuitively explore the massive
results via an interactive visualization tool, the MASSIVE viewer.
</p>
<p>
<strong>As an explanatory example, this website presents
massive results from agent-based
simulations of cancer evolution on a one-dimensional lattice
with free-ends.</strong> In each trials of the simulation, a cell divides with
a probability of 10<sup>4</sup>
until the population size reaches at <font color="green"><i>P</i></font>
or time reach at 10<sup>6</sup>.
In each cell division, <font color="green"><i>m</i></font> mutations
are generated on average and each cell can accumulate 3 mutations at maximum.
Resources are provided from both the ends
of the one-dimensional lattice and subject
to exponential decays with a half-distance parameter <font color="green"><i>d</i></font>.
Each mutation increases the cell division rate by <font color="green"><i>f</i></font> fold if no
resource bias exists (i.e., with infinite <font color="green"><i>d</i></font>).
In the presence of a resource bias, the cell division rate is
calculated by further multiplying the resource distribution.
</p>
<p>
For convenience, we converted the parameters as follows:
<font color="green"><i>m</i>′ = −log<sub>10</sub>(<i>m</i>)</font>,
<font color="green"><i>f</i>′ = log<sub>10</sub>(<i>f</i>)</font>,
<font color="green"><i>p</i>′ = log<sub>10</sub>(<i>P</i>)</font>
and
<font color="green"><i>d</i>′ = log<sub>10</sub>(<i>d</i>)</font>.
We then tested every combination of
<font color="green"><i>m</i>′ ∈ {1, 2, 3}</font>,
<font color="green"><i>f</i>′ ∈ {0.1,0.2,0.3,··· ,1.0}</font>,
<font color="green"><i>p</i>′ ∈ {3,4,5}</font> and
<font color="green"><i>d</i>′ ∈ {1,2,3,4,5}</font>, respectively.
Namely, <strong>a larger <font color="green"><i>m</i>′</font> means a smaller mutation rate,
a larger
<font color="green"><i>f</i>′</font> means a stronger mutation effect,
a larger <font color="green"><i>p</i>′</font> means a larger maximum population size,
and a larger <font color="green"><i>d</i>′</font> means a weaker resource bias.</strong>
For each parameter setting, we performed 50 Monte Carlo trials,
from which we obtained averaged values of 11 summary statistics (listed in Table 1)
for quantifying simulation results. Mutation profile heat maps
(an example is provided in Figure 1) were also produced from 5 of
the 50 Monte Carlo trials. All the results can be intuitively
explored in the <a href="focused.php">focused</a> and
<a href="comparative.php">comparative</a> view modes of the MASSIVE viewer
(see <a href="https://www.biorxiv.org/content/10.1101/510057v1">our paper</a> for more details).
</p>
</div>
<div class="container-fluid row">
<div class="col-sm-7">
<div class="table">
<p> Table 1. a list of the summary statistics </p>
<table class="table-bordegreen">
<thead>
<tr>
<th>name</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mutation count</td>
<td>number of all mutations</td>
</tr>
<tr>
<td>clonal mutation count</td>
<td>number of clonal mutations</td>
</tr>
<tr>
<td>subclonal mutation count</td>
<td>number of subclonal mutations</td>
</tr>
<tr>
<td>clonal mutation proportion</td>
<td>proportion of clonal mutation count</td>
</tr>
<tr>
<td>subclonal mutation proportion</td>
<td>proportion of subclonal mutation count</td>
</tr>
<tr>
<td>Shannon index 0.1</td>
<td>Shannon index calculated with a mutation frequency cutoff of 0.1</td>
</tr>
<tr>
<td>Shannon index 0.05</td>
<td>Shannon index calculated with a mutation frequency cutoff of 0.05</td>
</tr>
<tr>
<td>Simpson index 0.1</td>
<td>Simpson index calculated with a mutation frequency cutoff of 0.1</td>
</tr>
<tr>
<td>Simpson index 0.05</td>
<td>Simpson index calculated with a mutation frequency cutoff of 0.05</td>
</tr>
<tr>
<td>time</td>
<td>number of time steps when simulation is finished</td>
</tr>
<tr>
<td>population size</td>
<td>number of cells when simulation is finished</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="col-sm-5">
<div class="figure">
<p> Figre 1. an example of the mutation profile heat maps</p>
<img src="image/mutprofile.png" width="400" height="400">
</div>
</div>
</div>
</body>
<footer id="footer">
<p> </p>
<p> </p>
</footer>
</html>