forked from QMCPACK/qmcpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDMCEnergy.py
executable file
·96 lines (82 loc) · 2.36 KB
/
DMCEnergy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#!/usr/bin/env python
from numpy import *
import sys
def corr(i,x,mean,var):
N=len(x)
if var==0:#if the variance is 0 return an effectively infinity corr
return 1e100
corr=1.0/var*1.0/(N-i)*sum((x[0:N-i]-mean)*(x[i:N]-mean))
return corr
def Stats(x):
N=len(x)
mean=sum(x)/(N+0.0)
xSquared=x*x
var=sum(xSquared)/(N+0.0)-mean*mean
i=0
tempC=0.5
kappa=0.0
while (tempC>0 and i<(N-1)):
kappa=kappa+2.0*tempC
i=i+1
tempC=corr(i,x,mean,var)
if kappa == 0.0:
kappa = 1.0
Neff=(N+0.0)/(kappa+0.0)
error=sqrt(var/Neff)
return (mean,var,error,kappa)
def Block (x, blockfactor):
N = len(x)
Nblocks = N / blockfactor
xb = zeros(Nblocks)
for i in range(0,Nblocks):
start = i*blockfactor
end = (i+1)*blockfactor
xb[i] = sum(x[start:end])/(blockfactor+0.0)
return xb
def MeanErrorString (mean, error):
if (mean!=0.0):
meanDigits = math.floor(math.log(abs(mean))/math.log(10))
else:
meanDigits=2
if (error!=0.0):
rightDigits = -math.floor(math.log(error)/math.log(10))+1
else:
rightDigits=2
if (rightDigits < 0):
rightDigits = 0
formatstr = '%1.' + '%d' % rightDigits + 'f'
meanstr = formatstr % mean
errorstr = formatstr % error
return meanstr + ' +/- ' + errorstr
# return (meanstr, errorstr)
s = loadtxt(sys.argv[1])
c = s.shape[0]
if (len(sys.argv) > 3):
s = s / float(sys.argv[3])
if len(sys.argv) > 2:
first = int(sys.argv[2])
else:
first = 20
E = s[first:c,1];
Var = s[first:c,2];
Weight = s[first:c,3];
Pop = s[first:c,4];
Etrial = s[first:c,5];
N = len(E)
#print "Blockfactor Std Error"
#errlist = []
#for factor in range(10,N/2,10):
# Eblock = Block(E,factor)
# E2 = Eblock*Eblock
# avg = sum (Eblock)/(len(Eblock)+0.0)
# var = var=sum((Eblock-avg)*(Eblock-avg))/(len(Eblock)+0.0)
# error = sqrt (var/(len(Eblock)+0.0))
# errlist.append(error)
# print " %4d %8.6f" % (factor, error)
(avg, var, error, kapp) = Stats(E)
#error = max(errlist)
print "E = " + MeanErrorString(avg,error) + (" kappa = %1.3f" % (kapp))
(avg, var, error, kapp) = Stats(Var)
print "Var = " + MeanErrorString(avg,error)
(avg, var, error, kapp) = Stats(Pop)
print "Pop = " + MeanErrorString(avg,error)