-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathmake_submission.py
101 lines (89 loc) · 4.51 KB
/
make_submission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import os
import nibabel as nib
import numpy as np
from scipy import ndimage
from tqdm import tqdm
import glob
from nilearn.image import new_img_like
from utils.utils import read_image,resize,get_multi_class_labels
from utils.normalize import find_downsized_info
from predict import config
def get_cases(cases_dir):
cases_list = glob.glob(os.path.join(cases_dir, "*", "postprocessed_prediction.nii.gz"))
return cases_list
def cal_crop_shape(crop_slices):
crop_shape = list()
for dim in crop_slices:
crop_shape.append(dim.stop - dim.start)
return tuple(crop_shape)
def combine_labels(data, labels=(1,2,4), threshold=500):
label_indices = (1,0,2)
combined_data = np.zeros_like(data[0])
assert combined_data.shape == (128,128,128), "Wrong dimession!"
for idx in label_indices:
cur_label = labels[idx]
count = np.sum(data[idx] == 1)
if count < threshold and idx == 2:
continue
combined_data[data[idx] == 1] = cur_label
return combined_data
def postprocessing(case_dir):
print("postprocessing ...")
cases_list = glob.glob(os.path.join(cases_dir, "*", "prediction.nii.gz"))
for case in tqdm(cases_list):
net_pred_image = nib.load(case)
net_pred_data = net_pred_image.get_data()
# Get multi-class labels data
multi_label_data = np.squeeze(get_multi_class_labels(net_pred_data[np.newaxis][np.newaxis], n_labels=3, labels=(1,2,4), label_containing=True))
assert multi_label_data.shape == (3, 128, 128, 128), "Wrong shape!Excepeted (3, 128, 128, 128) but got{0}.".format(multi_label_data.shape)
# Fill holes iteratively utill no voxel value changes
iter_data = multi_label_data.copy()
iteration = 1
while True:
tmp_data = np.zeros_like(iter_data)
for label_channel in range(iter_data.shape[0]):
if iteration > 2 and label_channel == 2:
tmp_data[label_channel] = iter_data[label_channel]
else:
tmp_data[label_channel] = ndimage.binary_fill_holes(iter_data[label_channel]).astype(np.int8)
if np.sum(np.logical_xor(tmp_data,iter_data)) == 0:
filled_data = iter_data.copy()
break
else:
iter_data = tmp_data.copy()
iteration += 1
combined_data = combine_labels(filled_data)
assert combined_data.shape == (128, 128, 128), "Wrong shape!Excepeted (128, 128, 128) but got{0}.".format(combined_data.shape)
new_pred_image = new_img_like(net_pred_image, combined_data)
case_id = case.split("/")[-2]
new_pred_image.to_filename(os.path.join(case_dir, case_id,"postprocessed_prediction.nii.gz"))
def reconstruct(cases_list, data_src, output_dir, crop_size=(128, 128, 128), original_shape=(240,240,155)):
print("reconstructing...")
for case in tqdm(cases_list):
case_id = case.split("/")[-2]
data_path = os.path.join(data_src, case_id, "*")
set_files = glob.glob(data_path)
set_files.remove(os.path.join(data_src, case_id, "truth.nii.gz"))
crop_slices, affine, header = find_downsized_info([set_files], crop_size)
crop_shape = cal_crop_shape(crop_slices)
pred_image = read_image(case)
pred_image_data = pred_image.get_data()
pred_image_data = np.flip(pred_image_data, axis=0)
pred_image_data = np.flip(pred_image_data, axis=1)
fixed_pred_image = new_img_like(pred_image, pred_image_data,affine=pred_image.affine)
resized_image = resize(fixed_pred_image, crop_shape)
fill_data = np.zeros(original_shape)
fill_data[crop_slices[0], crop_slices[1], crop_slices[2]] = resized_image.get_data()
origin_image = read_image(set_files[0])
fill_image = new_img_like(origin_image, fill_data, affine=origin_image.affine)
fill_image.to_filename(os.path.join(output_dir, case_id+".nii.gz"))
# break
if __name__ == "__main__":
data_src = "./data/BraTs_2018_Data_Validation/" # original .nii.gz files
output_dir = os.path.join(config["prediction_dir"],"Reconstruct") # reconstructed results (128,128,128) => (240, 240, 155)
cases_dir = os.path.join(config["prediction_dir"],config["model_file"].split(".h5")[0]) # prediction results (128,128,128)
postprocessing(cases_dir)
cases_list = get_cases(cases_dir)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
reconstruct(cases_list, data_src, output_dir)