forked from Beomi/ko-lm-evaluation-harness
-
Notifications
You must be signed in to change notification settings - Fork 0
/
llama-2-ko-kobest.sh
executable file
·48 lines (40 loc) · 1.1 KB
/
llama-2-ko-kobest.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
export TOKENIZERS_PARALLELISM=false
RESULT_DIR='results/kobest_bench'
TASKS='kobest_hellaswag,kobest_copa,kobest_boolq,kobest_sentineg'
GPU_NO=3
CURRENT_TRAINED_TOKENS=65b
MODEL=/home/beomi/coding-ssd2t/EasyLM/llama-2-ko-7b
echo "mkdir -p $RESULT_DIR/$CURRENT_TRAINED_TOKENS"
mkdir -p $RESULT_DIR/$CURRENT_TRAINED_TOKENS
python main.py \
--model gpt2 \
--model_args pretrained=$MODEL \
--tasks $TASKS \
--num_fewshot 0 \
--device cuda:$GPU_NO \
--no_cache \
--output_path $RESULT_DIR/$CURRENT_TRAINED_TOKENS/0_shot.json
python main.py \
--model gpt2 \
--model_args pretrained=$MODEL \
--tasks $TASKS \
--num_fewshot 5 \
--no_cache \
--device cuda:$GPU_NO \
--output_path $RESULT_DIR/$CURRENT_TRAINED_TOKENS/5_shot.json
python main.py \
--model gpt2 \
--model_args pretrained=$MODEL \
--tasks $TASKS \
--num_fewshot 10 \
--no_cache \
--device cuda:$GPU_NO \
--output_path $RESULT_DIR/$CURRENT_TRAINED_TOKENS/10_shot.json
python main.py \
--model gpt2 \
--model_args pretrained=$MODEL \
--tasks $TASKS \
--num_fewshot 50 \
--no_cache \
--device cuda:$GPU_NO \
--output_path $RESULT_DIR/$CURRENT_TRAINED_TOKENS/50_shot.json