-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
239 lines (200 loc) · 9.21 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import time
import shutil
import parser
import argparse
import torch
import torch.nn
import torch.optim
import torchvision.models as models
import Models.resnet as resnet
from utils import prepare_dataloaders
from tqdm import tqdm
'''
reference:
pytorch, torchvision
conda install -c conda-forge torchvision
'''
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def main():
''' Main function '''
parser = argparse.ArgumentParser(description='Implement image classification on ImageNet datset using pytorch')
parser.add_argument('--arch', default='bam', type=str, help='Attention Model (bam, cbam)')
parser.add_argument('--backbone', default='resnet50', type=str, help='backbone classification model (resnet(18, 34, 50, 101, 152)')
parser.add_argument('--epoch', default=1, type=int, help='start epoch')
parser.add_argument('--n_epochs', default=350, type=int, help='numeber of total epochs to run')
parser.add_argument('--batch', default=256, type=int, help='mini batch size (default: 1024)')
parser.add_argument('--lr', default=0.1, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--save_directory', default='trained.chkpt', type=str, help='path to latest checkpoint')
parser.add_argument('--workers', default=0, type=int, help='num_workers')
parser.add_argument('--resume', default=False, type=bool, help='resume')
parser.add_argument('--datasets', default='CIFAR100', type=str, help='classification dataset (CIFAR10, CIFAR100, ImageNet)')
parser.add_argument('--weight_decay', default=5e-4, type=float, help='weight_decay')
parser.add_argument('--save', default='trained', type=str, help='trained.chkpt')
parser.add_argument('--save_multi', default='trained_multi', type=str, help='trained_multi.chkpt')
parser.add_argument('--evaluate', default=False, type=bool, help='evaluate')
parser.add_argument('--reduction_ratio', default=16, type=int, help='reduction_ratio')
parser.add_argument('--dilation_value', default=4, type=int, help='reduction_ratio')
args = parser.parse_args()
args.arch = args.arch.lower()
args.backbone = args.backbone.lower()
args.datasets = args.datasets.lower()
if not os.path.isdir('checkpoints'):
os.mkdir('checkpoints')
# To-do: Write a code relating to seed.
# use gpu or multi-gpu or not.
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
use_multi_gpu = torch.cuda.device_count() > 1
print('[Info] device:{} use_multi_gpu:{}'.format(device, use_multi_gpu))
if args.datasets == 'cifar10':
num_classes = 10
elif args.datasets == 'cifar100':
num_classes = 100
elif args.datasets == 'imagenet':
num_classes = 1000
# load the data.
print('[Info] Load the data.')
train_loader, valid_loader, train_size, valid_size = prepare_dataloaders(args)
# load the model.
print('[Info] Load the model.')
if args.backbone == 'resnet18':
model = resnet.resnet18(num_classes=num_classes, atte=args.arch, ratio=args.reduction_ratio, dilation = args.dilation_value)
elif args.backbone == 'resnet34':
model = resnet.resnet34(num_classes=num_classes, atte=args.arch, ratio=args.reduction_ratio, dilation = args.dilation_value)
elif args.backbone == 'resnet50':
model = resnet.resnet50(num_classes=num_classes, atte=args.arch, ratio=args.reduction_ratio, dilation = args.dilation_value)
elif args.backbone == 'resnet101':
model = resnet.resnet101(num_classes=num_classes, atte=args.arch, ratio=args.reduction_ratio, dilation = args.dilation_value)
elif args.backbone == 'resnet152':
model = resnet.resnet152(num_classes=num_classes, atte=args.arch, ratio=args.reduction_ratio, dilation = args.dilation_value)
model = model.to(device)
if use_multi_gpu : model = torch.nn.DataParallel(model)
print('[Info] Total parameters {} '.format(count_parameters(model)))
# define loss function.
criterion = torch.nn.CrossEntropyLoss().to(device)
# define optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
if args.resume:
# Load the checkpoint.
print('[Info] Loading checkpoint.')
if torch.cuda.device_count() > 1:
checkpoint = load_checkpoint(args.save)
else:
checkpoint = load_checkpoint(args.save)
backbone = checkpoint['backbone']
args.epoch = checkpoint['epoch']
state_dict = checkpoint['state_dict']
model.load_state_dict(state_dict)
print('[Info] epoch {} backbone {}'.format(args.epoch, backbone))
# run evaluate.
if args.evaluate:
_ = run_epoch(model, 'valid', [args.epoch, args.epoch], criterion, optimizer, valid_loader, valid_size, device)
return
# run train.
best_acc1 = 0.
for e in range(args.epoch, args.n_epochs + 1):
adjust_learning_rate(optimizer, e, args)
# train for one epoch
_ = run_epoch(model, 'train', [e, args.n_epochs], criterion, optimizer, train_loader, train_size, device)
# evaluate on validation set
with torch.no_grad():
acc1 = run_epoch(model, 'valid', [e, args.n_epochs], criterion, optimizer, valid_loader, valid_size, device)
# Save checkpoint.
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
save_checkpoint({
'epoch': e,
'backbone': args.backbone,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer': optimizer.state_dict(),
}, is_best, args.save)
if use_multi_gpu:
save_checkpoint({
'epoch': e,
'backbone': args.backbone,
'state_dict': model.module.state_dict(),
'best_acc1': best_acc1,
'optimizer': optimizer.state_dict(),
}, is_best, args.save_multi)
print('[Info] acc1 {} best@acc1 {}'.format(acc1, best_acc1))
def run_epoch(model, mode, epoch, criterion, optimizer, data_loader, dataset_size, device):
if mode == 'train':
model.train()
else:
model.eval()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
start = time.time()
tq = tqdm(data_loader, desc=' - (' + mode + ') ', leave=False)
for data, target in tq:
# prepare data
data, target = data.to(device), target.to(device)
# forward
output = model(data)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1,5))
losses.update(loss.item(), data.size(0))
top1.update(prec1[0], data.size(0))
top5.update(prec5[0], data.size(0))
if mode == 'train':
# compte gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
tq.set_description(' - ({}) [ epoch: {}/{} loss: {:.3f}/{:.3f} ] '.format(mode, epoch[0], epoch[1], losses.val, losses.avg))
#tqdm.write
tqdm.write(' - ({}) [ epoch: {}\ttop@1: {:.3f}\ttop@5: {:.3f}\tloss: {:.3f}\ttime: {:.3f}]'.format(mode, epoch, top1.avg, top5.avg, losses.avg, (time.time() - start)/60.))
return top1.avg
def save_checkpoint(state, is_best, prefix):
filename='checkpoints/{}_checkpoint.chkpt'.format(prefix)
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'checkpoints/{}_best.chkpt'.format(prefix))
print(' - [Info] The checkpoint file has been updated.')
def load_checkpoint(prefix):
filename='checkpoints/{}_checkpoint.chkpt'.format(prefix)
return torch.load(filename)
class AverageMeter(object):
'''Computes and stores the average and current value'''
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def adjust_learning_rate(optimizer, epoch, args):
lr = args.lr * (0.1 ** (epoch // 100))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
bsz = target.size(0)
'''
https://pytorch.org/docs/stable/torch.html#torch.topk
torch.topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor)
'''
_, pred = output.topk(maxk, 1, largest=True, sorted=True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / bsz))
return res
if __name__ == '__main__':
main()