Skip to content

Latest commit

 

History

History
38 lines (27 loc) · 1.32 KB

README.md

File metadata and controls

38 lines (27 loc) · 1.32 KB

BAM & CBAM Pytorch

Pytorch implementation of BAM and CBAM.

BAM & CBAM Pytorch

This code purpose to evaluate of popular attention model architectures, such as BAM, CBAM on the CIFAR dataset.

Park J, Woo S, Lee J Y, Kweon I S. BAM: Bottleneck Attention Module. 2018. BMVC2018(Oral)

Woo S, Park J, Lee J Y, Kweon I S. CBAM: Convolutional Block Attention Module. 2018. ECCV2018

Architecture

BAM image

CBAM image

Getting Started

$ git clone https://github.com/asdf2kr/BAM-CBAM-pytorch.git
$ cd BAM-CBAM-pytorch
$ python main.py --arch bam (default: bam network based on resnet50)

Performance

The table below shows models, dataset and performances

Model Backbone Dataset Top-1 Top-5 Size
ResNet resnet50 CIFAR-100 78.93% - 23.70M
BAM resnet50 CIFAR-100 79.62% - 24.06M
CBAM resnet50 CIFAR-100 81.02% - 26.23M

Reference

Official PyTorch code