-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathloss.py
56 lines (45 loc) · 1.99 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from haversine import haversine
import numpy as np
import logging
import tensorflow as tf
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO)
def tf_deg2rad(deg):
return deg * (np.pi/180)
def tf_rad2deg(rad):
return rad / (np.pi/180)
# haversine loss function for regression
def errors_mean(latlon_true, latlon_pred):
distances = []
for i in range(0, len(latlon_true)):
lat_true, lon_true = latlon_true[i]
lat_pred, lon_pred = latlon_pred[i]
distance = haversine((lat_true, lon_true), (lat_pred, lon_pred))
distances.append(distance)
acc_at_161 = 100 * len([d for d in distances if d < 161]) / float(len(distances))
logging.info("Mean: " + str(int(np.mean(distances))) + " Median: " +
str(int(np.median(distances))) + " Acc@161: " + str(int(acc_at_161)))
# return np.mean(distances), np.median(distances), acc_at_161
return np.mean(distances)
# A helper method that computes distance between two points on the surface of earth according to their coordinates.
# Inputs are tensors.
def dist(y_pred, y):
y_pred_ra = tf_deg2rad(tf.convert_to_tensor(y_pred))
y_ra = tf_deg2rad(tf.convert_to_tensor(y))
lat1 = y_pred_ra[:, 0]
lat2 = y_ra[:, 0]
dlon = (y_pred_ra - y_ra)[:, 1]
EARTH_R = 6372.8
y = tf.sqrt((tf.cos(lat2) * tf.sin(dlon)) ** 2 +
(tf.cos(lat1) * tf.sin(lat2) - tf.sin(lat1) * tf.cos(lat2) * tf.cos(dlon)) ** 2)
x = tf.sin(lat1) * tf.sin(lat2) + tf.cos(lat1) * tf.cos(lat2) * tf.cos(dlon)
c = tf.atan2(y, x)
return EARTH_R * c
def errors_mean(y_true, y_pred):
if y_true.shape.ndims != y_pred.shape.ndims:
raise TypeError('y should have the same shape as self.y_pred', ('y', y_true.type, 'y_pred', y_pred.type))
print("y_true.dtype", y_true.dtype)
if str(y_true.dtype).__contains__('float'):
dists = dist(y_pred, y_true)
return tf.reduce_mean(dists)
else:
raise NotImplementedError()