-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata.py
284 lines (249 loc) · 11.9 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import numpy as np
import csv
import pandas as pd
import os
import logging
import keras.preprocessing.text
from keras.preprocessing import sequence
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO)
def load_state_labels(userids, user_text_seq_full, user_loc, labels):
y, X, userIDs = ([] for i in range(3))
for user in userids:
if 'UKN' not in user_loc[user][0]:
if 'District of Columbia' in user_loc[user][2]:
if user_loc[user][0] == 'United States of America':
X.append(user_text_seq_full[user])
userIDs.append(user)
if not user_loc[user][2] in labels:
labels.append(user_loc[user][2])
y.append(labels.index(user_loc[user][2]))
if 'UKN' not in user_loc[user][1]:
if user_loc[user][0] == 'United States of America':
X.append(user_text_seq_full[user])
userIDs.append(user)
if not user_loc[user][1] in labels:
labels.append(user_loc[user][1])
y.append(labels.index(user_loc[user][1]))
return userIDs, y, labels
def load_region_labels(userids, user_text_seq_full, user_loc, labels):
regions = {}
regions['Connecticut'] = 0
regions['Maine'] = 0
regions['Massachusetts'] = 0
regions['New Hampshire'] = 0
regions['Rhode Island'] = 0
regions['Vermont'] = 0
regions['New Jersey'] = 0
regions['New York'] = 0
regions['Pennsylvania'] = 0
regions['Indiana'] = 1
regions['Illinois'] = 1
regions['Michigan'] = 1
regions['Ohio'] = 1
regions['Wisconsin'] = 1
regions['Iowa'] = 1
regions['Kansas'] = 1
regions['Minnesota'] = 1
regions['Missouri'] = 1
regions['Nebraska'] = 1
regions['North Dakota'] = 1
regions['South Dakota'] = 1
regions['Delaware'] = 2
regions['District of Columbia'] = 2
regions['Florida'] = 2
regions['Georgia'] = 2
regions['Maryland'] = 2
regions['North Carolina'] = 2
regions['South Carolina'] = 2
regions['Virginia'] = 2
regions['West Virginia'] = 2
regions['Alabama'] = 2
regions['Kentucky'] = 2
regions['Mississippi'] = 2
regions['Tennessee'] = 2
regions['Arkansas'] = 2
regions['Louisiana'] = 2
regions['Oklahoma'] = 2
regions['Texas'] = 2
regions['Arizona'] = 3
regions['Colorado'] = 3
regions['Idaho'] = 3
regions['New Mexico'] = 3
regions['Montana'] = 3
regions['Utah'] = 3
regions['Nevada'] = 3
regions['Wyoming'] = 3
regions['California'] = 3
regions['Oregon'] = 3
regions['Washington'] = 3
X, y, userIDs = [], [], []
for user in userids:
if 'UKN' not in user_loc[user][0]:
if 'District of Columbia' in user_loc[user][2]:
if user_loc[user][0] == 'United States of America':
region = regions[user_loc[user][2]]
if not region in labels:
labels.append(region)
X.append(user_text_seq_full[user])
userIDs.append(user)
y.append(labels.index(region))
if 'UKN' not in user_loc[user][1]:
if user_loc[user][0] == 'United States of America':
region = regions[user_loc[user][1]]
if not region in labels:
labels.append(region)
y.append(labels.index(region))
X.append(user_text_seq_full[user])
userIDs.append(user)
return userIDs, y, labels
# Load "einstein_locations.csv"
def read_user_location(dataset):
user_locations = {}
with open(dataset, 'r') as f:
i = 0
for line in f:
if i > 0:
content = line.split(',')
# user_location['user'] = ['country', 'state', 'county', 'city']
user_locations[content[0]] = [content[1], content[2], content[3], content[4]]
i += 1
f.close()
return user_locations
def convert_y_coord(y_train, y_dev, y_test):
y_train = np.array(y_train).astype(np.float)
y_dev = np.array(y_dev).astype(np.float)
y_test = np.array(y_test).astype(np.float)
return y_train, y_dev, y_test
def load_data(data_home, **kwargs):
encoding = kwargs.get('encoding', 'utf-8')
dtype = kwargs.get('dtype', 'float32')
task = kwargs.get('task')
dl = DataLoader(data_home=data_home, encoding=encoding)
logging.info('loading dataset...')
dl.load_data()
Y_train, Y_dev, Y_test, labels = [], [], [], []
if task == "regression":
print("Using latitude and longitude")
Y_train = np.array([[a[0], a[1]] for a in dl.df_train[['lat', 'lon']].values.tolist()], dtype=dtype)
Y_dev = np.array([[a[0], a[1]] for a in dl.df_dev[['lat', 'lon']].values.tolist()], dtype=dtype)
Y_test = np.array([[a[0], a[1]] for a in dl.df_test[['lat', 'lon']].values.tolist()], dtype=dtype)
elif task == "classify_states":
print("Using states")
user_locations_file = "eisenstein_locations.csv"
user_loc = read_user_location(user_locations_file)
user_train, Y_train, labels = load_state_labels(list(dl.df_train.index), dl.df_train['text'].to_dict(),
user_loc, labels)
user_dev, Y_dev, labels = load_state_labels(list(dl.df_dev.index), dl.df_dev['text'].to_dict(), user_loc,
labels)
user_test, Y_test, labels = load_state_labels(list(dl.df_test.index), dl.df_test['text'].to_dict(), user_loc,
labels)
dl.df_train = dl.df_train[dl.df_train.index.isin(user_train)]
dl.df_dev = dl.df_dev[dl.df_dev.index.isin(user_dev)]
dl.df_test = dl.df_test[dl.df_test.index.isin(user_test)]
elif task == "classify_regions":
print("Using regions")
user_locations_file = "eisenstein_locations.csv"
user_loc = read_user_location(user_locations_file)
user_train, Y_train, labels = load_region_labels(list(dl.df_train.index), dl.df_train['text'].to_dict(),
user_loc, labels)
user_dev, Y_dev, labels = load_region_labels(list(dl.df_dev.index), dl.df_dev['text'].to_dict(), user_loc,
labels)
user_test, Y_test, labels = load_region_labels(list(dl.df_test.index), dl.df_test['text'].to_dict(), user_loc,
labels)
dl.df_train = dl.df_train[dl.df_train.index.isin(user_train)]
dl.df_dev = dl.df_dev[dl.df_dev.index.isin(user_dev)]
dl.df_test = dl.df_test[dl.df_test.index.isin(user_test)]
dl.tosequence()
U_test = dl.df_test.index.tolist()
U_dev = dl.df_dev.index.tolist()
U_train = dl.df_train.index.tolist()
X_train = dl.X_train.astype(dtype)
X_dev = dl.X_dev.astype(dtype)
X_test = dl.X_test.astype(dtype)
dl.max_features = X_train.shape[1]
Y_train, Y_dev, Y_test = convert_y_coord(Y_train, Y_dev, Y_test)
data = (X_train, Y_train, X_dev, Y_dev, X_test, Y_test, U_train, U_dev, U_test, labels)
return data
class DataLoader:
def __init__(self, data_home, encoding='utf-8', maxlen=None, max_features=None, char_level=False):
self.data_home = data_home
self.maxlen = maxlen
self.max_features = max_features
self.encoding = encoding
self.char_level = char_level
def load_data(self):
logging.info('loading the dataset from %s' % self.data_home)
train_file = os.path.join(self.data_home, 'user_info.train.gz')
dev_file = os.path.join(self.data_home, 'user_info.dev.gz')
test_file = os.path.join(self.data_home, 'user_info.test.gz')
df_train = pd.read_csv(train_file, delimiter='\t', encoding=self.encoding, names=['user', 'lat', 'lon', 'text'],
quoting=csv.QUOTE_NONE, error_bad_lines=False)
df_dev = pd.read_csv(dev_file, delimiter='\t', encoding=self.encoding, names=['user', 'lat', 'lon', 'text'],
quoting=csv.QUOTE_NONE, error_bad_lines=False)
df_test = pd.read_csv(test_file, delimiter='\t', encoding=self.encoding, names=['user', 'lat', 'lon', 'text'],
quoting=csv.QUOTE_NONE, error_bad_lines=False)
df_train.dropna(inplace=True)
df_dev.dropna(inplace=True)
df_test.dropna(inplace=True)
df_train.drop_duplicates(['user'], inplace=True, keep='last')
df_train.set_index(['user'], drop=True, append=False, inplace=True)
df_train.sort_index(inplace=True)
df_dev.drop_duplicates(['user'], inplace=True, keep='last')
df_dev.set_index(['user'], drop=True, append=False, inplace=True)
df_dev.sort_index(inplace=True)
df_test.drop_duplicates(['user'], inplace=True, keep='last')
df_test.set_index(['user'], drop=True, append=False, inplace=True)
df_test.sort_index(inplace=True)
self.df_train = df_train
self.df_dev = df_dev
self.df_test = df_test
def tosequence(self):
self.vectorizer = SequenceVectorizer(self.char_level, self.maxlen, self.max_features)
logging.info(self.vectorizer)
self.X_train = self.vectorizer.fit(self.df_train.text.values)
self.X_dev = self.vectorizer.transform(self.df_dev.text.values)
self.X_test = self.vectorizer.transform(self.df_test.text.values)
logging.info("training n_samples: %d, n_features: %d" % self.X_train.shape)
logging.info("development n_samples: %d, n_features: %d" % self.X_dev.shape)
logging.info("test n_samples: %d, n_features: %d" % self.X_test.shape)
class SequenceVectorizer:
def __init__(self, char_level=False, maxlen=None, max_features=None):
self.max_features = max_features
self.char_level = char_level
self.tokenizer = keras.preprocessing.text.Tokenizer(filters=" ", char_level=self.char_level,
num_words=self.max_features)
self.maxlen = maxlen
self.vocabulary_ = None
def fit(self, X):
self.tokenizer.fit_on_texts(X)
X_seq = self.tokenizer.texts_to_sequences(X)
# pad 4987 to 5000
X_seq = sequence.pad_sequences(X_seq, maxlen=5000, padding='post')
self.maxlen = X_seq.shape[1]
self.vocabulary_ = self.tokenizer.word_index
self.vocabulary_ = sorted(self.tokenizer.word_counts, key=self.tokenizer.word_counts.get, reverse=True)
if (self.max_features):
self.vocabulary_ = self.vocabulary_[:self.max_features]
logging.info('SequenceVectorizer maxlen:{}, #words:{}, most common words:{}'.
format(self.maxlen, len(self.vocabulary_), 0))
return X_seq
def transform(self, X):
logging.info('Fitting SequenceVectorizer in {} texts'.format(len(X)))
X_seq = self.tokenizer.texts_to_sequences(X)
X_seq = sequence.pad_sequences(X_seq, maxlen=self.maxlen, padding='post')
return X_seq
if __name__ == '__main__':
data_loader = DataLoader(data_home='./data/', encoding='latin1')
data_loader.load_data()
data_loader.tosequence()
dtype = 'float32'
U_test = data_loader.df_test.index.tolist()
U_dev = data_loader.df_dev.index.tolist()
U_train = data_loader.df_train.index.tolist()
X_train = data_loader.X_train.astype(dtype)
X_dev = data_loader.X_dev.astype(dtype)
X_test = data_loader.X_test.astype(dtype)
Y_train = np.array([[a[0], a[1]] for a in data_loader.df_train[['lat', 'lon']].values.tolist()], dtype=dtype)
Y_dev = np.array([[a[0], a[1]] for a in data_loader.df_dev[['lat', 'lon']].values.tolist()], dtype=dtype)
Y_test = np.array([[a[0], a[1]] for a in data_loader.df_test[['lat', 'lon']].values.tolist()], dtype=dtype)
data = (X_train, Y_train, X_dev, Y_dev, X_test, Y_test, U_train, U_dev, U_test)