-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_float16.c
515 lines (461 loc) · 13.8 KB
/
train_float16.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
#ifdef __linux
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "train_samples.h"
#include "test_samples.h"
#else
#include "enable_timer.h"
const int train_samples_size=64;
#endif
#include "float16.h"
#include <stdio.h>
#include <stdlib.h>
#include "config.h"
#define INTERM_SIZE (INPSIZE - KSIZE + 1)
#define POOL_SIZE (INTERM_SIZE >> 1)
#define FLAT_SIZE (POOL_SIZE*POOL_SIZE*KERNELS)
typedef short f16_t;
static inline f16_t max(f16_t a,f16_t b)
{
return f16_gt(a,b) ? a : b;
}
static inline f16_t relu(f16_t x)
{
if( f16_gt(x,0) )
return x;
return 0;
}
typedef struct Params {
f16_t conv_kernel[KERNELS][KSIZE][KSIZE];
f16_t conv_offset[KERNELS];
f16_t ip_mat[CLASS_NO][FLAT_SIZE];
f16_t ip_offset[CLASS_NO];
} Params;
typedef struct Layers {
f16_t conv_res[KERNELS][INTERM_SIZE][INTERM_SIZE];
f16_t pool_res[FLAT_SIZE];
f16_t probs[CLASS_NO];
} Layers;
typedef struct AllData {
Params params;
Params params_diffs;
Params params_vel;
Layers blobs;
Layers blob_diffs;
} AllData;
void conv_forward(unsigned char *digit,f16_t kernel[KERNELS][KSIZE][KSIZE],f16_t offset[KERNELS],f16_t top[KERNELS][INTERM_SIZE][INTERM_SIZE])
{
int n,i,j,r,c;
unsigned char row;
for(r=0;r<INTERM_SIZE;r++) {
for(c=0;c<INTERM_SIZE;c++) {
for(n=0;n<KERNELS;n++)
top[n][r][c] = offset[n];
for(i=0;i<KSIZE;i++) {
row = digit[r+i];
for(j=0;j<KSIZE;j++) {
if((row >> (c+j)) & 1) {
for(n=0;n<KERNELS;n++)
top[n][r][c]= f16_add(top[n][r][c], kernel[n][i][j]);
}
}
}
}
}
}
void conv_backward(unsigned char *digit,f16_t kernel[KERNELS][KSIZE][KSIZE], f16_t offset[KERNELS], f16_t top[KERNELS][INTERM_SIZE][INTERM_SIZE],
f16_t kernel_d[KERNELS][KSIZE][KSIZE],f16_t offset_d[KERNELS],f16_t top_d[KERNELS][INTERM_SIZE][INTERM_SIZE])
{
int n,i,j,r,c;
unsigned char row;
for(n=0;n<KERNELS;n++) {
f16_t sum=0;
for(i=0;i<INTERM_SIZE;i++) {
for(j=0;j<INTERM_SIZE;j++) {
sum=f16_add(sum,top_d[n][i][j]);
}
}
offset_d[n] = f16_add(offset_d[n],sum);
}
for(r=0;r<INTERM_SIZE;r++) {
for(c=0;c<INTERM_SIZE;c++) {
for(i=0;i<KSIZE;i++) {
row = digit[r+i];
for(j=0;j<KSIZE;j++) {
if((row >> (c+j)) & 1) {
for(n=0;n<KERNELS;n++)
kernel_d[n][i][j] = f16_add(kernel_d[n][i][j],top_d[n][r][c]);
}
}
}
}
}
}
static unsigned char pooling_selection_mask[FLAT_SIZE];
void max_pool_2x2_relu_forward(f16_t bottom[KERNELS][INTERM_SIZE][INTERM_SIZE],f16_t top[FLAT_SIZE])
{
int n,r,c,r2,c2,pos,index;
f16_t m,tmp;
pos = 0;
for(n=0;n<KERNELS;n++) {
for(r=0;r<POOL_SIZE;r++) {
for(c=0;c<POOL_SIZE;c++) {
r2=r*2;
c2=c*2;;
index=0;
m = bottom[n][r2+0][c2+0];
tmp = bottom[n][r2+0][c2+1];
if(f16_gt(tmp,m)) {
index = 1;
m = tmp;
}
tmp = bottom[n][r2+1][c2+0];
if(f16_gt(tmp,m)) {
index = 2;
m = tmp;
}
tmp = bottom[n][r2+1][c2+1];
if(f16_gt(tmp,m)) {
index = 3;
m = tmp;
}
pooling_selection_mask[pos]=index;
top[pos++] = relu(m);
}
}
}
}
void max_pool_2x2_relu_backward(f16_t bottom[KERNELS][INTERM_SIZE][INTERM_SIZE],f16_t top[FLAT_SIZE],
f16_t bottom_d[KERNELS][INTERM_SIZE][INTERM_SIZE],f16_t top_d[FLAT_SIZE])
{
int k,r,c,index,dr,dc;
int pos=0;
for(k=0;k<FLAT_SIZE;k++) {
if(f16_lte(top[k],0))
top_d[k] = 0;
}
for(k=0;k<KERNELS;k++) {
for(r=0;r<POOL_SIZE;r++) {
for(c=0;c<POOL_SIZE;c++) {
index = pooling_selection_mask[pos];
for(dr=0;dr<2;dr++)
for(dc=0;dc<2;dc++)
bottom_d[k][r*2+dr][c*2+dc]=(dr == (index >> 1) && dc == (index & 1)) ? top_d[pos] : 0;
pos++;
}
}
}
}
void ip_forward(f16_t bottom[FLAT_SIZE],f16_t top[CLASS_NO],f16_t offset[CLASS_NO],f16_t M[CLASS_NO][FLAT_SIZE])
{
f16_t sum;
int i,j;
for(i=0;i<CLASS_NO;i++) {
sum = offset[i];
for(j=0;j<FLAT_SIZE;j++) {
sum = f16_add(sum,f16_mul(bottom[j],M[i][j]));
}
top[i]=sum;
}
}
void ip_backward(f16_t bottom [FLAT_SIZE],f16_t top[CLASS_NO],f16_t offset[CLASS_NO],f16_t M[CLASS_NO][FLAT_SIZE],
f16_t bottom_d[FLAT_SIZE],f16_t top_d[CLASS_NO],f16_t offset_d[CLASS_NO],f16_t M_d[CLASS_NO][FLAT_SIZE])
{
int i,j,k;
for(k=0;k<CLASS_NO;k++)
offset_d[k] = f16_add(offset_d[k],top_d[k]);
for(j=0;j<FLAT_SIZE;j++)
bottom_d[j] = 0;
for(i=0;i<CLASS_NO;i++) {
for(j=0;j<FLAT_SIZE;j++) {
M_d[i][j] = f16_add(M_d[i][j],f16_mul(bottom[j],top_d[i]));
bottom_d[j] = f16_add(bottom_d[j],f16_mul(M[i][j],top_d[i]));
}
}
}
int euclidean_loss_forward(f16_t bottom[CLASS_NO],f16_t *loss,int label)
{
int i,max_index;
f16_t sum=0,target,max_val;
f16_t sdiff;
const f16_t factor = f16_half;
max_index = 0;
max_val = bottom[0];
for(i=1;i<CLASS_NO;i++) {
if(f16_gt(bottom[i],max_val)) {
max_index=i;
max_val = bottom[i];
}
}
for(i=0;i<CLASS_NO;i++) {
target = label == i ? f16_one : 0;
sdiff = f16_sub(target,bottom[i]);
sum = f16_add(sum,f16_mul(sdiff,sdiff));
}
*loss = f16_add(*loss,f16_mul(factor,sum));
return max_index == label;
}
void euclidean_loss_backward(f16_t bottom[CLASS_NO],f16_t diff[CLASS_NO],int label)
{
int i;
f16_t target;
f16_t sdiff;
for(i=0;i<CLASS_NO;i++) {
target = label == i ? f16_one : 0;
sdiff = f16_sub(bottom[i],target);
diff[i] = sdiff;
}
}
int net_forward(unsigned char *digit,int label,Params *p,Layers *l,f16_t *loss)
{
conv_forward(digit,p->conv_kernel,p->conv_offset,l->conv_res);
max_pool_2x2_relu_forward(l->conv_res,l->pool_res);
ip_forward(l->pool_res,l->probs,p->ip_offset,p->ip_mat);
return euclidean_loss_forward(l->probs,loss,label);
}
void net_backward(unsigned char *digit,int label,Params *p,Params *pd,Layers *l,Layers *ld)
{
euclidean_loss_backward(l->probs,ld->probs,label);
ip_backward(l->pool_res,l->probs,p->ip_offset,p->ip_mat,
ld->pool_res,ld->probs,pd->ip_offset,pd->ip_mat);
max_pool_2x2_relu_backward(l->conv_res,l->pool_res,ld->conv_res,ld->pool_res);
conv_backward(digit,p->conv_kernel,p->conv_offset,l->conv_res,
pd->conv_kernel,pd->conv_offset,ld->conv_res);
}
int forward_backward(AllData *d,unsigned char *digit,int label,f16_t *loss)
{
int r;
r = net_forward(digit,label,&d->params,&d->blobs,loss);
net_backward(digit,label,&d->params,&d->params_diffs,&d->blobs,&d->blob_diffs);
return r;
}
AllData data;
void apply_update(Params *params,Params *params_diff,f16_t lr,f16_t wd,f16_t momentum)
{
const int size = sizeof(Params) / sizeof(f16_t);
f16_t *p=(f16_t*)(&data.params);
f16_t *pd=(f16_t*)(&data.params_diffs);
f16_t *v=(f16_t*)(&data.params_vel);
int i;
f16_t wdcomp = f16_sub(f16_one,wd);
for(i=0;i<size;i++) {
v[i] = f16_add(f16_mul(momentum,v[i]),f16_mul(lr,pd[i]));
p[i] = f16_sub(f16_mul(p[i],wdcomp),v[i]);
pd[i] = 0;
}
}
unsigned short randv()
{
static unsigned short lfsr = 0xACE1u;
unsigned short bit;
bit = ((lfsr >> 0) ^ (lfsr >> 2) ^ (lfsr >> 3) ^ (lfsr >> 5));
lfsr = (lfsr >> 1) | (bit << 15);
return lfsr;
}
f16_t gauus()
{
unsigned res = 0;
short i;
const f16_t factor = 3072; // 1/4096 f16_div(f16_one,f16_from_int(4096));
for(i=0;i<12;i++)
res += randv() >> 5;
short resf = f16_from_int(res);
return f16_sub(f16_mul(factor,resf),0x4200); //0x4200 = 3
}
void xavier(f16_t *v,int size,int Nin,int Nout)
{
int i;
f16_t factor = f16_div(f16_from_int(2),f16_from_int(Nin + Nout));
for(i=0;i<size;i++) {
v[i] = f16_mul(factor,gauus());
}
}
void init_params(Params *p)
{
int i;
xavier(&p->ip_mat[0][0],CLASS_NO*FLAT_SIZE,FLAT_SIZE,CLASS_NO);
for(i=0;i<CLASS_NO;i++)
p->ip_offset[i]=0;
xavier(&p->conv_kernel[0][0][0],KERNELS*KSIZE*KSIZE,KERNELS*KSIZE*KSIZE,KERNELS*KSIZE*KSIZE);
for(i=0;i<KERNELS;i++)
p->conv_offset[i]=0;
}
#ifdef __linux
unsigned char screen[6144 + 32*24];
#else
unsigned char *screen = (void *)(16384);
#endif
const int rows_for_digit = 2;
#define ST_TRAIN 0
#define ST_OK 1
#define ST_FAIL 2
void get_character(unsigned char *chr,int r,int c)
{
unsigned char *tgt = screen;
tgt += (r % 8)*32+c + (32*8*8) * (r / 8);
for(int k=0;k<8;k++) {
*chr++ = *tgt;
tgt += 256;
}
}
void mark_character(int digit,int batch,int status)
{
int addr = digit * train_samples_size + batch;
unsigned char *mark = screen + 6144;
if(addr > 32*25) {
return;
}
mark += addr;
switch(status) {
case ST_TRAIN: *mark = (3) << 3; break;
case ST_OK: *mark = (2) << 4; break;
case ST_FAIL: *mark = (1) << 4; break;
}
}
unsigned char sample[8];
f16_t blr = 0;
f16_t train(int epoch)
{
if(epoch == 0) {
init_params(&data.params);
blr = f16_div(f16_one,f16_from_int(100));
}
int acc = 0;
for(int sample_id=0;sample_id < DATA_SIZE;sample_id++) {
f16_t loss = 0;
for(int i=0;i<CLASS_NO;i++) {
get_character(sample,i*rows_for_digit + sample_id / 32,sample_id % 32);
mark_character(i,sample_id,ST_TRAIN);
int cur_ac = forward_backward(&data,sample,i,&loss);
if(!cur_ac)
mark_character(i,sample_id,ST_FAIL);
else
mark_character(i,sample_id,ST_OK);
acc += cur_ac;
}
if(epoch==2 && sample_id == 0) {
blr = f16_div(blr,f16_from_int(10));
}
if(sample_id % ITER_SIZE == (ITER_SIZE-1)) {
f16_t wd = f16_div(f16_from_int(5),f16_from_int(10000));
f16_t mom = f16_div(f16_from_int(9),f16_from_int(10));
apply_update(&data.params,&data.params_diffs,blr,wd,mom);
}
}
return f16_div(f16_from_int(acc),f16_from_int(train_samples_size *CLASS_NO));
}
f16_t test()
{
int N=0;
int acc = 0;
for(int b=0;b<DATA_SIZE;b++) {
f16_t loss = 0;
for(int i=0;i<CLASS_NO;i++) {
int sample_id = b;
get_character(sample,i*rows_for_digit + sample_id / 32,sample_id % 32);
mark_character(i,sample_id,ST_TRAIN);
int cur_ac = net_forward(sample,i,&data.params,&data.blobs,&loss);
if(!cur_ac)
mark_character(i,sample_id,ST_FAIL);
else
mark_character(i,sample_id,ST_OK);
acc += cur_ac;
N++;
}
}
return f16_div(f16_from_int(acc),f16_from_int(N));
}
#ifdef __linux
void print_character(unsigned char *chr,int r,int c)
{
unsigned char *tgt = screen;
tgt += (r % 8)*32+c + (32*8*8) * (r / 8);
for(int k=0;k<8;k++) {
*tgt = *chr++;
tgt += 256;
}
}
void make_screen_data(unsigned char samples[10][sizeof(train_samples) / 10 / 8][8],int digits,int offset)
{
for(int b=0;b<train_samples_size;b++) {
for(int c=0;c<digits;c++) {
print_character(samples[c][b],offset + c*rows_for_digit + b / 32,b % 32);
}
}
}
struct __attribute__((packed)) tap_header {
unsigned char type;
char file_name[10];
unsigned short length;
unsigned short start;
short dummy;
};
void write_body(unsigned char *ptr,int code,int length,FILE *f)
{
unsigned short len = length + 2;
fwrite(&len,2,1,f);
unsigned char cs = code;
fputc(cs,f);
for(int i=0;i<length;i++)
cs ^= ptr[i];
fwrite(ptr,length,1,f);
fputc(cs,f);
}
void write_header(char const *name,FILE *f)
{
struct tap_header h;
h.type = 3;
memset(h.file_name,' ',sizeof(h.file_name));
int len = strlen(name);
if(len > (int)sizeof(h.file_name))
len = sizeof(h.file_name);
memcpy(h.file_name,name,len);
h.length = sizeof(screen);
h.start = 16384;
h.dummy = -1;
write_body(&h.type,0,sizeof(h),f);
}
void make_screen(unsigned char samples[10][sizeof(train_samples) / 10 / 8][8],char const *hname,char const *bname)
{
memset(screen,0,6144);
memset(screen+6144,56,32*24);
make_screen_data(samples,10,0);
FILE *f=fopen(hname,"w");
write_header(bname,f);
fclose(f);
f=fopen(bname,"w");
write_body(screen,0xFF,sizeof(screen),f);
fclose(f);
}
#endif
#ifdef __linux
int main()
{
printf("Data Size = %d\n",(int)sizeof(AllData));
make_screen(train_samples,"train_screen_header.tap","train_screen_body.tap");
for(int e=0;e<EPOCHS;e++) {
f16_t acc = train(e);
printf("Epoch %d acc=%d\n",e,f16_int(f16_mul(acc,f16_from_int(100))));
}
make_screen(test_samples,"test_screen_header.tap","test_screen_body.tap");
f16_t acc = test();
printf("Test acc=%d\n",f16_int(f16_mul(acc,f16_from_int(100))));
return 0;
}
#else
int main()
{
enable_timer();
unsigned char *statep = (void*)(25599);
int epoch = *statep;
f16_t acc;
if(epoch < 255) {
acc = train(epoch);
}
else {
acc = test();
}
return f16_int(f16_mul(f16_from_int(4096),acc));
}
#endif