-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathhandler-test.py
281 lines (204 loc) · 9.62 KB
/
handler-test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
'''
Developed by Armin Seyeditabari & Narges Tabari.
'''
import os
import sys
import getopt
import gc
import time
import csv
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
from tqdm import tqdm
import math
from sklearn.model_selection import train_test_split
from sklearn import metrics
import matplotlib.pyplot as plt
import tensorflow as tf
import os
import time
import gc
import re
import glob
import configparser
# token_dataset_File = './data/wang_cleaned_full_dataset.csv'
puncts = [',', '.', '"', ':', ')', '(', '-', '!', '?', '|', ';', "'", '$', '&', '/', '[', ']', '>', '%', '=', '#', '*', '+', '\\', '•', '~', '@', '£',
'·', '_', '{', '}', '©', '^', '®', '`', '<', '→', '°', '€', '™', '›', '♥', '←', '×', '§', '″', '′', 'Â', '█', '½', 'à', '…',
'“', '★', '”', '–', '●', 'â', '►', '−', '¢', '²', '¬', '░', '¶', '↑', '±', '¿', '▾', '═', '¦', '║', '―', '¥', '▓', '—', '‹', '─',
'▒', ':', '¼', '⊕', '▼', '▪', '†', '■', '’', '▀', '¨', '▄', '♫', '☆', 'é', '¯', '♦', '¤', '▲', 'è', '¸', '¾', 'Ã', '⋅', '‘', '∞',
'∙', ')', '↓', '、', '│', '(', '»', ',', '♪', '╩', '╚', '³', '・', '╦', '╣', '╔', '╗', '▬', '❤', 'ï', 'Ø', '¹', '≤', '‡', '√', ]
config = configparser.RawConfigParser()
try:
config.read('./test_configuration.cfg')
except:
print("Couldn't read config file from ./test_configuration.cfg")
exit()
embedding_file = config.get('Params', 'vectorspace')
token_dataset_File = config.get('Params', 'dataset')
test_file = config.get('Params', 'test_file')
traget_Emotion = config.get('Params', 'target_emotion')
# max_features = int(config.get('Params', 'max_features'))
maxlen = int(config.get('Params', 'maxlen'))
batchsize = int(config.get('Params', 'batchsize'))
num_epochs = int(config.get('Params', 'num_epochs'))
embeddingSize = 300
'''
Seperates punctuations from words in given string x
'''
def clean_text(x):
x = str(x).strip()
for punct in puncts:
x = x.replace(punct, ' %s ' % punct)
x = x.replace(',', ' ')
x = x.replace('\n', ' ')
x = x.lower()
text = re.sub(r"( #\S+)*$", '', x)
return x
return text
'''
Prepares the original vocabulary
'''
def prepare_vocab(max_features, token_data):
tokens_text = token_data['text'].fillna("_##_").values
tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=max_features)
tokenizer.fit_on_texts(list(tokens_text))
return tokenizer
'''
prepares test data based on vocabulary of training data
'''
def prepare_test(test_dataset, tokenizer):
## cleans up the text and makes it lower case
test_dataset["text"] = test_dataset["text"].apply(lambda x: clean_text(x))
all_X = test_dataset['text'].fillna("_##_").values
all_X = tokenizer.texts_to_sequences(all_X)
lengths = [len(l) for l in all_X]
all_X = tf.keras.preprocessing.sequence.pad_sequences(all_X, maxlen=maxlen)
return all_X
'''
Create an embedding matrix in which we keep only the embeddings for words which are in our word_index
'''
def load_embedding(word_index, embedding_file, max_features):
def get_coefs(word, *arr): return word, np.asarray(arr, dtype='float32')
embeddings_index = dict(get_coefs(*o.split(" ")) for o in open(embedding_file))
embed_size = len(embeddings_index[next(iter(embeddings_index))])
## make sure all embeddings have the right format
key_to_del = []
for key, value in embeddings_index.items():
if not len(value) == embed_size:
key_to_del.append(key)
for key in key_to_del:
del embeddings_index[key]
notFountWords = []
all_embs = np.stack(embeddings_index.values())
emb_mean, emb_std = -0.005838499, 0.48782197
embed_size = all_embs.shape[1]
nb_words = min(max_features, len(word_index))
embedding_matrix = np.random.normal(emb_mean, emb_std, (nb_words, embed_size))
count = 0
for word, i in word_index.items():
if i >= max_features:
continue
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
count = count + 1
else:
notFountWords.append(word)
with open('WordsNotFound.txt', 'w') as f:
for item in notFountWords:
f.write("%s\n" % item)
return embedding_matrix, embed_size
def model_gru(embedding_matrix, embed_size, max_features):
inp = tf.keras.layers.Input(shape=(maxlen,))
x = tf.keras.layers.Embedding(max_features, embed_size, weights=[embedding_matrix])(inp)
x = tf.keras.layers.Bidirectional(tf.keras.layers.GRU(35, return_sequences=True))(x)
avg_pool = tf.keras.layers.GlobalAveragePooling1D()(x)
max_pool = tf.keras.layers.GlobalMaxPooling1D()(x)
conc = tf.keras.layers.concatenate([avg_pool, max_pool])
conc = tf.keras.layers.Dense(70, activation="relu")(conc)
conc = tf.keras.layers.Dropout(0.5)(conc)
outp = tf.keras.layers.Dense(1, activation="sigmoid")(conc)
model = tf.keras.models.Model(inputs=inp, outputs=outp)
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
'''
This function computes the best F1 score by looking at predictions.
'''
def f1_smart(y_true, y_pred):
thresholds = []
for thresh in np.arange(0.1, 0.501, 0.01):
thresh = np.round(thresh, 2)
res = metrics.f1_score(y_true, (y_pred > thresh).astype(int))
thresholds.append([thresh, res])
print("F1 score at threshold {0} is {1}".format(thresh, res))
thresholds.sort(key=lambda x: x[1], reverse=True)
best_thresh = thresholds[0][0]
best_f1 = thresholds[0][1]
print("Best threshold: ", best_thresh)
return best_f1, best_thresh
# load all models and get the results for each
joy_weightFile = 'trained_models/joy-250-20.h5'
sadness_weightFile = 'trained_models/sadness-250-20.h5'
anger_weightFile = 'trained_models/anger-250-20.h5'
love_weightFile = 'trained_models/love-250-20.h5'
thankfulness_weightFile = 'trained_models/thankfulness-250-20.h5'
fear_weightFile = 'trained_models/fear-250-20.h5'
surprise_weightFile = 'trained_models/surprise-250-20.h5'
print('>>>>>>>>>>> reading files ...')
test_dataset = pd.read_csv(test_file)
token_data = pd.read_csv(token_dataset_File)
print('>>>>>>>>>>> preparing data ...')
tknzr_100k = prepare_vocab(100000, token_data)
tknzr_50k = prepare_vocab(50000, token_data)
tknzr_25k = prepare_vocab(25000, token_data)
print('>>>>>>>>>>> preparing the models ...')
embedding_matrix_100k, embedding_size = load_embedding(tknzr_100k.word_index, embedding_file, 100000)
model_joy = model_gru(embedding_matrix_100k, embeddingSize, 100000)
model_sadness = model_gru(embedding_matrix_100k, embeddingSize, 100000)
model_anger = model_gru(embedding_matrix_100k, embeddingSize, 100000)
model_love = model_gru(embedding_matrix_100k, embeddingSize, 100000)
embedding_matrix_50k, embedding_size = load_embedding(tknzr_50k.word_index, embedding_file,50000)
model_thankfulness = model_gru(embedding_matrix_50k, embeddingSize, 50000)
model_fear = model_gru(embedding_matrix_50k, embeddingSize, 50000)
embedding_matrix_25k, embedding_size = load_embedding(tknzr_25k.word_index, embedding_file,25000)
model_surprise = model_gru(embedding_matrix_25k, embeddingSize, 25000)
print('>>>>>>>>>>> loading models ...')
model_joy.load_weights(joy_weightFile)
model_sadness.load_weights(sadness_weightFile)
model_anger.load_weights(anger_weightFile)
model_love.load_weights(love_weightFile)
model_thankfulness.load_weights(thankfulness_weightFile)
model_fear.load_weights(fear_weightFile)
model_surprise.load_weights(surprise_weightFile)
print('>>>>>>>>>>> generating predictions ...')
test_X_100k = prepare_test(test_dataset, tknzr_100k)
test_X_50k = prepare_test(test_dataset, tknzr_50k)
test_X_25k = prepare_test(test_dataset, tknzr_25k)
test_dataset_list = test_dataset.values.tolist()
test_dataset_list = [j for sub in test_dataset_list for j in sub]
pred_joy_y = model_joy.predict([test_X_100k], batch_size=1024, verbose=0)
joy_preds = pred_joy_y.tolist()
joy_preds =[j for sub in joy_preds for j in sub]
pred_sadness_y = model_sadness.predict([test_X_100k], batch_size=1024, verbose=0)
sadness_preds = pred_sadness_y.tolist()
sadness_preds =[j for sub in sadness_preds for j in sub]
pred_anger_y = model_anger.predict([test_X_100k], batch_size=1024, verbose=0)
anger_preds = pred_anger_y.tolist()
anger_preds =[j for sub in anger_preds for j in sub]
pred_love_y = model_love.predict([test_X_50k], batch_size=1024, verbose=0)
love_preds = pred_love_y.tolist()
love_preds =[j for sub in love_preds for j in sub]
pred_thankfulness_y = model_thankfulness.predict([test_X_50k], batch_size=1024, verbose=0)
thankfulness_preds = pred_thankfulness_y.tolist()
thankfulness_preds =[j for sub in thankfulness_preds for j in sub]
pred_fear_y = model_fear.predict([test_X_50k], batch_size=1024, verbose=0)
fear_preds = pred_fear_y.tolist()
fear_preds =[j for sub in fear_preds for j in sub]
pred_surprise_y = model_surprise.predict([test_X_25k], batch_size=1024, verbose=0)
surprise_preds = pred_surprise_y.tolist()
surprise_preds =[j for sub in surprise_preds for j in sub]
print('################')
resultsdict = {'text': test_dataset_list, 'joy': joy_preds, 'sadness': sadness_preds, 'anger': anger_preds, 'love': love_preds, 'thankfulness': thankfulness_preds, 'fear': fear_preds, 'surprise': surprise_preds }
results_df = pd.DataFrame(resultsdict)
print(results_df)
results_df.to_csv('classification_output.csv', float_format='%.3f', index=False)