-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
478 lines (400 loc) · 17.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import os
import sys
import math
import random
import time
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import args
import csv
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from torch.autograd import Variable
from KittiDataset import KittiDataset
def obstacleLossFun(outputBatch, obstacleBatch):
outFlat = outputBatch.view(-1)
inpFlat = obstacleBatch.view(-1)
intersection = (outFlat * inpFlat).abs().sum()
return intersection / len(outFlat)
def heatmapAccuracy(outputMap, labelMap, thr=1.5):
pred = np.unravel_index(outputMap.argmax(), outputMap.shape)
gt = np.unravel_index(labelMap.argmax(), labelMap.shape)
dist = math.sqrt((pred[0] - gt[0]) ** 2 + (pred[1] - gt[1]) ** 2)
if dist <= thr:
return 1, dist, (pred[0], pred[1])
return 0, dist, (pred[0], pred[1])
def weightedMSE(outputMap, labelMap, weightMap):
out = (outputMap - labelMap) ** 2
out = out * weightMap
loss = out.sum(0)
return loss
def weightMatrix(labelMap):
labelClone = labelMap.clone()
weightMat = labelMap.clone()
num_nonzeros = torch.nonzero(labelClone).size(0)
num_zeros = cmd.imageHeight * cmd.imageWidth - num_nonzeros
weightMat[labelClone == 0] = float(1) / num_zeros
weightMat[labelClone != 0] = float(1) / num_nonzeros
return weightMat
# Returns True if the model is LSTM based
def loadModel(modelType, imageWidth, imageHeight, activation, initType, numChannels, batchnorm, dilation,
hiddenUnits=512, fcSize=4096, softmax=False):
# Encoder Decoder CNN without LSTM / RNN units
if modelType == "edCNN_wp":
from Model import EnDeWithPooling
model = EnDeWithPooling(activation, initType, numChannels, batchnorm, softmax)
model.init_weights()
return model, False
if modelType == "convLSTM":
from Model import EnDeConvLSTM
model = EnDeConvLSTM(activation, initType, numChannels, imageHeight, imageWidth, batchnorm=batchnorm,
softmax=softmax)
model.init_weights()
return model, True
if modelType == "convLSTM_ws":
from Model import EnDeConvLSTM_ws
model = EnDeConvLSTM_ws(activation, initType, numChannels, imageHeight, imageWidth, batchnorm=batchnorm,
softmax=softmax)
model.init_weights()
return model, True
if modelType == "skipLSTM":
from Model import SkipLSTMEnDe
model = SkipLSTMEnDe(activation, initType, numChannels, imageHeight, imageWidth, batchnorm=batchnorm,
softmax=softmax)
model.init_weights()
return model, True
if modelType == "enDeLayerNorm":
from Model import EnDeLayerNorm_ws
model = EnDeLayerNorm_ws(activation, initType, numChannels, imageHeight, imageWidth, softmax=softmax)
model.init_weights()
return model, True
if modelType == "enDeLayerNorm1D":
from Model import EnDeLayerNorm1D_ws
model = EnDeLayerNorm1D_ws(activation, initType, numChannels, imageHeight, imageWidth, softmax=softmax)
model.init_weights()
return model, True
if modelType == "skipLayerNorm":
from Model import SkipLSTMLayerNorm
model = SkipLSTMLayerNorm(activation, initType, numChannels, imageHeight, imageWidth, softmax=softmax)
model.init_weights()
return model, True
if modelType == "skipLayerNorm1D":
from Model import SkipLSTMLayerNorm1D
model = SkipLSTMLayerNorm1D(activation, initType, numChannels, imageHeight, imageWidth, softmax=softmax)
model.init_weights()
return model, True
###########################################################################
##### MAIN CODE #####
###########################################################################
cmd = args.arguments
cmd.channels = []
if cmd.lane != "False":
cmd.channels.append("lane")
if cmd.obstacles != "False":
cmd.channels.append("obstacles")
if cmd.road != "False":
cmd.channels.append("road")
if cmd.vehicles != "False":
cmd.channels.append("vehicles")
print("Channels Used: ", cmd.channels)
model, isLSTM = loadModel(cmd.modelType, cmd.imageWidth, cmd.imageHeight, cmd.activation, cmd.initType,
len(cmd.channels) + 1, cmd.batchnorm, cmd.dilation)
model = model.cuda()
# Make Directory Structure to Save the Models:
baseDir = os.path.dirname(os.path.realpath(__file__))
expDir = os.path.join(baseDir, 'ablation_cache', cmd.modelType, time.strftime("%d_%m_%Y_%H_%M"), cmd.expID)
lossDir = os.path.join(expDir, 'loss')
os.makedirs(expDir, exist_ok=True)
os.makedirs(lossDir, exist_ok=True)
# Save the command line arguments
with open(os.path.join(expDir, 'args.txt'), 'w') as cmdFile:
for arg in vars(cmd):
cmdFile.write(arg + ' ' + str(getattr(cmd, arg)) + '\n')
# Loss Function
criterion = nn.MSELoss()
# Optimizer
optimizer = None
if cmd.optMethod == 'adam':
optimizer = optim.Adam(model.parameters(), lr=cmd.lr, betas=(cmd.beta1, cmd.beta2), weight_decay=cmd.weightDecay)
elif cmd.optMethod == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=cmd.lr, momentum=cmd.momentum, weight_decay=cmd.weightDecay,
nesterov=False)
elif cmd.optMethod == 'amsgrad':
optimizer = optim.Adam(model.parameters(), lr=cmd.lr, betas=(cmd.beta1, cmd.beta2), weight_decay=cmd.weightDecay,
amsgrad=True)
# Default CUDA tensor
torch.set_default_tensor_type(torch.cuda.FloatTensor)
# Scale factor to scale the label channel
scf = 1
if cmd.scaleFactor:
scf = cmd.imageHeight * cmd.imageWidth
if cmd.csvDir is None:
cmd.csvDir = cmd.dataDir
print("-"*100)
print("Loss: ", cmd.lossFun)
print("Data Dir: ", cmd.dataDir)
print("CSV Dir: ", cmd.csvDir)
trainInfoPath = os.path.join(cmd.csvDir, cmd.trainPath)
trainDataset = KittiDataset(cmd.dataDir, height=cmd.imageHeight, width=cmd.imageWidth, train=True,
infoPath=trainInfoPath, augmentation=cmd.augmentation,
augmentationProb=cmd.augmentationProb, channels=cmd.channels,
groundTruth=cmd.groundTruth)
valInfoPath = os.path.join(cmd.csvDir, cmd.valPath)
valDataset = KittiDataset(cmd.dataDir, height=cmd.imageHeight, width=cmd.imageWidth, train=False,
infoPath=valInfoPath, channels=cmd.channels, groundTruth=cmd.groundTruth)
epochTrainLoss = []
epochValidLoss = []
# Saving Model Weights
best_model_weights = copy.deepcopy(model.state_dict())
best_loss = 100000000
# Saving Future Model Weights
best_model_weights_future = copy.deepcopy(model.state_dict())
best_loss_future = 100000000
# Loss History
lossHistory = []
# Train Loss History
trainHistory = []
# Validation History
validationHistory = []
for epoch in range(cmd.nepochs):
print("-"*100)
print("Epoch No: {}".format(epoch))
startTime = time.time()
model.train()
# Total Loss of one trajectory
loss = None
# Hidden states of the LSTM
state = None
# Network Prediction
out = None
prevOut = None
# Number of samples forwarded
count = 0
# Apply Loss after every batch only
labelBatch = None
outputBatch = None
weightBatch = None
# Updated train and val loss after each epoch
trainLossPerEpoch = []
validLossPerEpoch = []
seqLoss = []
curSeqNum = 0
# Training Loop
for i in range(len(trainDataset)):
if loss is None:
# First pair to be forwarded, hence zero grad
model.zero_grad()
grid, kittiSeqNum, vehicleId, frame1, frame2, endOfSequence, offset, numFrames, augmentation = trainDataset[i]
# The Last Channel is the target frame and first n - 1 are source frames
inp = grid[:-1, :].unsqueeze(0).cuda()
currLabel = grid[-1:, :].unsqueeze(0).cuda()
# weightMat = weightMatrix(currLabel)
currOutput = None
obstacle = None
if labelBatch is None:
labelBatch = scf * grid[-1:, :].unsqueeze(0).cuda()
else:
labelBatch = torch.cat((labelBatch, (scf * (grid[-1:, :])).unsqueeze(0).cuda()), 0)
# Pass the future predictions after pre-conditioning the LSTM
if offset >= int(cmd.futureFrames) and epoch > int(cmd.futureEpochs):
new_inp = inp.clone().squeeze(0)
if cmd.minMaxNorm:
mn, mx = torch.min(prevOut), torch.max(prevOut)
prevOut = (prevOut - mn) / (mx - mn)
new_inp[0] = prevOut
inp = new_inp.unsqueeze(0).cuda()
if isLSTM:
if cmd.modelType in ["skipLSTM", "skipLayerNorm1D", "skipLayerNorm"]:
# 3 LSTMs => 3 hidden states
out = model.forward(inp, state)
currOutputMap = out.clone()
state = (model.h, model.c, model.h1, model.c1, model.h2, model.c2)
else:
# Simple LSTM => Only 1 hidden state
out = model.forward(inp, state)
currOutputMap = out.clone()
state = (model.h, model.c)
else:
# No LSTM => No hidden state
# Forward the input and obtain the result
out = model.forward(inp)
currOutputMap = out.clone()
if outputBatch is None:
outputBatch = out
else:
outputBatch = torch.cat((outputBatch, out), 0)
count += 1
prevOut = currOutputMap.detach().cpu().squeeze(0).squeeze(0)
currOutputMap = currOutputMap.detach().cpu().numpy().squeeze(0).squeeze(0)
currLabel = currLabel.detach().cpu().numpy().squeeze(0).squeeze(0)
_, dist, predCoordinates = heatmapAccuracy(currOutputMap, currLabel)
if offset >= int(cmd.futureFrames):
seqLoss.append(dist)
if count == cmd.seqLen or endOfSequence is True:
# Regularization
l2_reg = None
for W in model.parameters():
if l2_reg is None:
l2_reg = W.norm(2)
else:
l2_reg = l2_reg + W.norm(2)
l2_reg = cmd.gamma * l2_reg
if cmd.lossFun == "default":
loss = criterion(outputBatch, labelBatch)
# loss = sum([criterion(outputBatch, labelBatch), l2_reg, obstacleLoss])
elif cmd.lossFun == "weightedMSE":
loss = weightedMSE(outputBatch, labelBatch, weightBatch)
# loss = sum([weightedMSE(outputBatch, labelBatch, weightBatch), l2_reg, obstacleLoss])
if isLSTM:
if endOfSequence is True:
loss.backward()
else:
loss.backward(retain_graph=True)
else:
loss.backward()
if cmd.gradClip is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), cmd.gradClip)
optimizer.step()
# Reset
loss = None
labelBatch = None
outputBatch = None
count = 0
if endOfSequence is True:
if numFrames >= 60:
trainLossPerEpoch.append(np.mean(seqLoss))
print("kittiSeq: {}, vehicleId: {}, trainSeqNo: {}, numFrames: {}, Augmentation: {}, Seq Loss: {}".format(
kittiSeqNum, vehicleId, curSeqNum, numFrames, augmentation, np.mean(seqLoss)))
lossHistory.append(["Training", kittiSeqNum, vehicleId, curSeqNum, augmentation, np.mean(seqLoss)])
curSeqNum += 1
if isLSTM:
state = None
seqLoss = []
print("Average train loss: ", np.mean(trainLossPerEpoch))
print("For training : --- %s seconds ---" % (time.time() - startTime))
if np.mean(trainLossPerEpoch) >= 15:
print("Params Value")
for name, param in model.named_parameters():
print("Name: ", name)
print("Grad: ", param.grad.data.norm(2.))
epochTrainLoss.append(np.mean(trainLossPerEpoch))
trainHistory.append([epoch, epochTrainLoss[-1]])
# Validation
startTime = time.time()
state = None
model.eval()
seqLoss = []
curSeqNum = 0
for i in range(len(valDataset)):
grid, kittiSeqNum, vehicleId, frame1, frame2, endOfSequence, offset, numFrames, augmentation = valDataset[i]
# The Last Channel is the target frame and first n - 1 are source frames
inp = grid[:-1, :].unsqueeze(0).cuda()
label = grid[-1:, :].unsqueeze(0).cuda()
if offset >= int(cmd.futureFrames) and epoch > int(cmd.futureEpochs):
new_inp = inp.clone()
new_inp = new_inp.squeeze(0)
if cmd.minMaxNorm:
mn, mx = torch.min(prevOut), torch.max(prevOut)
prevOut = (prevOut - mn) / (mx - mn)
new_inp[0] = prevOut
inp = new_inp.unsqueeze(0).cuda()
if isLSTM:
if cmd.modelType in ["skipLSTM", "skipLayerNorm1D", "skipLayerNorm"]:
out = model.forward(inp, state)
currOutputMap = out.clone()
state = (model.h, model.c, model.h1, model.c1, model.h2, model.c2)
else:
out = model.forward(inp, state)
currOutputMap = out.clone()
state = (model.h, model.c)
else:
out = model.forward(inp)
currOutputMap = out.clone()
prevOut = currOutputMap.detach().cpu().squeeze(0).squeeze(0)
outputMap = out.detach().cpu().numpy().squeeze(0).squeeze(0)
labelMap = label.detach().cpu().numpy().squeeze(0).squeeze(0)
_, dist, predCoordinates = heatmapAccuracy(outputMap, labelMap)
if offset >= int(cmd.futureFrames):
seqLoss.append(dist)
if endOfSequence:
state = None
if offset >= int(cmd.futureFrames):
if numFrames >= 60:
validLossPerEpoch.append(np.mean(seqLoss))
print("kittiSeq: {}, vehicleId: {}, valSeqNo: {}, numFrames: {}, Augmentation: {}, Seq Loss: {}".format(
kittiSeqNum, vehicleId, curSeqNum, numFrames, augmentation, np.mean(seqLoss)))
lossHistory.append(["Validation", kittiSeqNum, vehicleId, curSeqNum, augmentation, np.mean(seqLoss)])
seqLoss = []
curSeqNum += 1
avgValidLoss = np.mean(validLossPerEpoch)
print("Average valid loss: ", avgValidLoss)
epochValidLoss.append(avgValidLoss)
validationHistory.append([epoch, epochValidLoss[-1]])
if avgValidLoss < best_loss:
best_loss = avgValidLoss
best_model_weights = copy.deepcopy(model.state_dict())
checkpoint = {
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"train_loss": epochTrainLoss[-1],
"valid_loss": best_loss
}
torch.save(checkpoint, os.path.join(expDir, 'checkpoint.tar'))
torch.save(model, os.path.join(expDir, 'model.pth'))
if epoch > int(cmd.futureEpochs):
if avgValidLoss < best_loss_future:
best_loss_future = avgValidLoss
best_model_weights_future = copy.deepcopy(model.state_dict())
checkpoint_future = {
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"train_loss": epochTrainLoss[-1],
"valid_loss": best_loss_future
}
torch.save(checkpoint_future, os.path.join(expDir, 'checkpoint_future.tar'))
torch.save(model, os.path.join(expDir, 'model_future.pth'))
print("For Validation: --- %s seconds ---" % (time.time() - startTime))
if epoch % 5 == 0:
fig, ax = plt.subplots(1)
ax.plot(range(len(epochTrainLoss)), epochTrainLoss, 'r', label='Train Loss')
ax.plot(range(len(epochValidLoss)), epochValidLoss, 'g', label='Valid Loss')
ax.legend()
plt.ylabel('Loss')
plt.xlabel('Epochs')
fig.savefig(os.path.join(expDir, 'loss', 'loss_epoch'))
plt.close()
print("Best Validation Loss: ", best_loss)
# Plotting
fig, ax = plt.subplots(1)
ax.plot(range(len(epochTrainLoss)), epochTrainLoss, 'r', label='Train Loss')
ax.plot(range(len(epochValidLoss)), epochValidLoss, 'g', label='Valid Loss')
ax.legend()
plt.ylabel('Loss')
plt.xlabel('Epochs')
fig.savefig(os.path.join(expDir, 'loss', 'loss_epoch'))
plt.close()
lossHistoryPath = os.path.join(expDir, 'loss', 'history.csv')
lossHistory.insert(0, ["Type", "kittiSeq", "vehicleId", "valSeqNo", "Augmentation", "Seq Loss"])
with open(lossHistoryPath, "w") as f:
wr = csv.writer(f)
wr.writerows(lossHistory)
trainHistoryPath = os.path.join(expDir, 'loss', 'epoch_train.csv')
validationHistoryPath = os.path.join(expDir, 'loss', 'epoch_validation.csv')
trainHistory.insert(0, ["Epoch", "Train Loss"])
validationHistory.insert(0, ["Epoch", "Validation Loss"])
with open(trainHistoryPath, "w") as f:
wr = csv.writer(f)
wr.writerows(trainHistory)
with open(validationHistoryPath, "w") as f:
wr = csv.writer(f)
wr.writerows(validationHistory)
def writeCSV(filePath, dataList):
with open(filePath, "w") as f:
wr = csv.writer(f)
wr.writerows(dataList)