From a67bf592789d62944358915e3ce6af7eefc50c3a Mon Sep 17 00:00:00 2001 From: "J. Aravind" Date: Tue, 16 Jun 2020 09:29:40 +0200 Subject: [PATCH] Pre CRAN 0.1.4 p3 --- NEWS.md | 1 + R/FourPHFfit.bulk.R | 2 + R/gcdata.R | 2 + R/germination.indices.R | 2 + R/plot.FourPHFfit.R | 2 + README.html | 24 +- README.md | 12 +- docs/articles/Introduction.html | 1467 +++++++++++------ .../figure-html/unnamed-chunk-9-1.png | Bin 8515 -> 13776 bytes docs/index.html | 10 +- docs/news/index.html | 2 + docs/pkgdown.yml | 4 +- docs/reference/FourPHFfit.bulk.html | 4 +- docs/reference/FourPHFfit.html | 6 +- docs/reference/gcdata-1.png | Bin 51105 -> 140173 bytes docs/reference/gcdata-2.png | Bin 51636 -> 136414 bytes docs/reference/gcdata.html | 4 +- docs/reference/germination.indices.html | 4 +- docs/reference/plot.FourPHFfit-1.png | Bin 29577 -> 74006 bytes docs/reference/plot.FourPHFfit-2.png | Bin 29592 -> 74519 bytes docs/reference/plot.FourPHFfit-3.png | Bin 17741 -> 59962 bytes docs/reference/plot.FourPHFfit-4.png | Bin 17741 -> 59958 bytes docs/reference/plot.FourPHFfit-5.png | Bin 17113 -> 39768 bytes docs/reference/plot.FourPHFfit-6.png | Bin 17113 -> 39775 bytes docs/reference/plot.FourPHFfit-7.png | Bin 30025 -> 78238 bytes docs/reference/plot.FourPHFfit-8.png | Bin 30050 -> 78187 bytes docs/reference/plot.FourPHFfit.html | 4 +- docs/sitemap.xml | 22 +- man/FourPHFfit.bulk.Rd | 2 + man/gcdata.Rd | 2 + man/germination.indices.Rd | 2 + man/plot.FourPHFfit.Rd | 2 + vignettes/Introduction.pdf | Bin 620430 -> 715565 bytes 33 files changed, 1041 insertions(+), 539 deletions(-) diff --git a/NEWS.md b/NEWS.md index d812d66..e544c86 100644 --- a/NEWS.md +++ b/NEWS.md @@ -22,6 +22,7 @@ Goldberg (1971), Bilbro and Wanjura (1982), and Fakorede and Ayoola (1980). * Fixed documentation errors in `FourPHFfit` and `CVGermTime`. * Updated documentation for `GermSpeed`, `GermSpeedAccumulated`, `CUGerm` `MeanGermRate`, `SEGermRate`, `CVG`, `MeanGermTime`, `VarGermTime`, `SEGermTime`, `GermUncertainty`, `GermSynchrony`, `MeanGermPercent`, `MeanGermNumber`, `WeightGermPercent`, `TimsonsIndex`, `GermRateGeorge` and `GermSynchrony`. * Converted all equations in Rd files to `MathJax`using `mathjaxr` +* Added long running examples to `\donttest` in `germination.indices`, `plot.FourPHFfit`, `gcdata` and `FourPHFfit.bulk`. # germinationmetrics 0.1.3 diff --git a/R/FourPHFfit.bulk.R b/R/FourPHFfit.bulk.R index 2da6cf1..c473790 100644 --- a/R/FourPHFfit.bulk.R +++ b/R/FourPHFfit.bulk.R @@ -48,6 +48,7 @@ #' #' @examples #' +#' \donttest{ #' data(gcdata) #' #' counts.per.intervals <- c("Day01", "Day02", "Day03", "Day04", "Day05", @@ -59,6 +60,7 @@ #' intervals = 1:14, partial = TRUE, #' fix.y0 = TRUE, fix.a = TRUE, xp = c(10, 60), #' tmax = 20, tries = 3, umax = 90, umin = 10) +#' } #' FourPHFfit.bulk <- function(data, total.seeds.col, counts.intervals.cols, intervals, partial = TRUE, diff --git a/R/gcdata.R b/R/gcdata.R index 4de7e4b..a069593 100644 --- a/R/gcdata.R +++ b/R/gcdata.R @@ -41,6 +41,7 @@ #' #' @examples #' +#' \donttest{ #' data(gcdata) #' library(ggplot2) #' library(reshape2) @@ -91,5 +92,6 @@ #' germination.indices(gcdata, total.seeds.col = "Total Seeds", #' counts.intervals.cols = counts.per.intervals, #' intervals = 1:14, partial = TRUE, max.int = 5) +#' } #' "gcdata" diff --git a/R/germination.indices.R b/R/germination.indices.R index 4cef3de..4cb754d 100644 --- a/R/germination.indices.R +++ b/R/germination.indices.R @@ -182,6 +182,7 @@ #' #' @examples #' +#' \donttest{ #' data(gcdata) #' #' counts.per.intervals <- c("Day01", "Day02", "Day03", "Day04", "Day05", @@ -190,6 +191,7 @@ #' germination.indices(gcdata, total.seeds.col = "Total Seeds", #' counts.intervals.cols = counts.per.intervals, #' intervals = 1:14, partial = TRUE, max.int = 5) +#' } #' #' @seealso This function is a wrapper around the different functions for #' computation of single-value germination indices in diff --git a/R/plot.FourPHFfit.R b/R/plot.FourPHFfit.R index 9f1b2cd..6f3e1d5 100644 --- a/R/plot.FourPHFfit.R +++ b/R/plot.FourPHFfit.R @@ -61,6 +61,7 @@ #' #' @examples #' +#' \donttest{ #' x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0) #' y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40) #' int <- 1:length(x) @@ -93,6 +94,7 @@ #' # Without y axis limits adjustment #' plot(fit1, limits = FALSE) #' plot(fit2, limits = FALSE) +#' } #' plot.FourPHFfit <- function(x, rog = TRUE, t50.total = TRUE, t50.germ = TRUE, tmgr = TRUE, mgt = TRUE, uniformity = TRUE, diff --git a/README.html b/README.html index 250c4b2..efd6538 100644 --- a/README.html +++ b/README.html @@ -608,26 +608,26 @@
minimal R version License: GPL v3 CRAN_Status_Badge rstudio mirror downloads

-

develVersion

+

develVersion

-

Project Status: Active lifecycle Last-changedate Rdoc Zenodo DOI Analytics

+

Project Status: Active lifecycle Last-changedate Rdoc Zenodo DOI Analytics


Description

Provides functions to compute various germination indices such as germinability, median germination time, mean germination time, mean germination rate, speed of germination, Timson’s index, germination value, coefficient of uniformity of germination, uncertainty of germination process, synchrony of germination etc. from germination count data. Includes functions for fitting cumulative seed germination curves using four-parameter hill function and computation of associated parameters. See the vignette for more, including full list of citations for the methods implemented.

Installation

The package can be installed from CRAN as follows:

- +
if (!require('devtools')) install.packages('devtools')
+install.packages('germinationmetrics', dependencies=TRUE)

The development version can be installed from github as follows:

- +
devtools::install_github("aravind-j/germinationmetrics")

Detailed tutorial

For a detailed tutorial (vignette) on how to used this package type:

- +
browseVignettes(package = 'germinationmetrics')

The vignette for the latest version is also available online.

What’s new

To know whats new in this version type:

- +
news(package='germinationmetrics')

CRAN page

Github page

@@ -635,12 +635,12 @@

Zenodo DOI

Citing germinationmetrics

To cite the methods in the package use:

- +
citation("germinationmetrics")

 To cite the R package 'germinationmetrics' in publications use:
 
-  Aravind, J., Vimala Devi, S., Radhamani, J., Jacob, S. R., and Kalyani Srinivasan (2020).  germinationmetrics:
-  Seed Germination Indices and Curve Fitting. R package version 0.1.4,
+  Aravind, J., Vimala Devi, S., Radhamani, J., Jacob, S. R., and Kalyani Srinivasan (2020).  germinationmetrics: Seed
+  Germination Indices and Curve Fitting. R package version 0.1.4,
   https://github.com/aravind-j/germinationmetricshttps://cran.r-project.org/package=germinationmetrics.
 
 A BibTeX entry for LaTeX users is
@@ -654,8 +654,8 @@ 

Citing germinationmetrics

note = {https://cran.r-project.org/package=germinationmetrics}, } -This free and open-source software implements academic research by the authors and co-workers. If you use it, please -support the project by citing the package. +This free and open-source software implements academic research by the authors and co-workers. If you use it, please support +the project by citing the package.
diff --git a/README.md b/README.md index 0f2b190..661b21e 100644 --- a/README.md +++ b/README.md @@ -17,12 +17,12 @@ v3](https://img.shields.io/badge/License-GPL%20v3-blue.svg)](https://www.gnu.org [![rstudio mirror downloads](https://cranlogs.r-pkg.org/badges/grand-total/germinationmetrics?color=green)](https://CRAN.R-project.org/package=germinationmetrics) -[![develVersion](https://img.shields.io/badge/devel%20version-0.1.3.9000-orange.svg)](https://github.com/aravind-j/germinationmetrics) +[![develVersion](https://img.shields.io/badge/devel%20version-0.1.4-orange.svg)](https://github.com/aravind-j/germinationmetrics) [![Project Status: Active](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![lifecycle](https://img.shields.io/badge/lifecycle-stable-brightgreen.svg)](https://www.tidyverse.org/lifecycle/#stable) -[![Last-changedate](https://img.shields.io/badge/last%20change-2020--06--15-yellowgreen.svg)](https://github.com/aravind-j/germinationmetrics/commits/master) +[![Last-changedate](https://img.shields.io/badge/last%20change-2020--06--16-yellowgreen.svg)](https://github.com/aravind-j/germinationmetrics/commits/master) [![Rdoc](http://www.rdocumentation.org/badges/version/germinationmetrics)](http://www.rdocumentation.org/packages/germinationmetrics) [![Zenodo DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1219630.svg)](https://doi.org/10.5281/zenodo.1219630) @@ -98,8 +98,8 @@ citation("germinationmetrics") To cite the R package 'germinationmetrics' in publications use: - Aravind, J., Vimala Devi, S., Radhamani, J., Jacob, S. R., and Kalyani Srinivasan (2020). germinationmetrics: - Seed Germination Indices and Curve Fitting. R package version 0.1.4, + Aravind, J., Vimala Devi, S., Radhamani, J., Jacob, S. R., and Kalyani Srinivasan (2020). germinationmetrics: Seed + Germination Indices and Curve Fitting. R package version 0.1.4, https://github.com/aravind-j/germinationmetricshttps://cran.r-project.org/package=germinationmetrics. A BibTeX entry for LaTeX users is @@ -113,6 +113,6 @@ A BibTeX entry for LaTeX users is note = {https://cran.r-project.org/package=germinationmetrics}, } -This free and open-source software implements academic research by the authors and co-workers. If you use it, please -support the project by citing the package. +This free and open-source software implements academic research by the authors and co-workers. If you use it, please support +the project by citing the package. ``` diff --git a/docs/articles/Introduction.html b/docs/articles/Introduction.html index f2d8718..0e87ab0 100644 --- a/docs/articles/Introduction.html +++ b/docs/articles/Introduction.html @@ -105,7 +105,7 @@

The germinationmetrics Package: A Brief Introduction

Aravind, J., Vimala Devi, S., Radhamani, J., Jacob, S. R., and Kalyani Srinivasan

-

2020-06-15

+

2020-06-16

Source: vignettes/Introduction.Rmd @@ -295,8 +295,459 @@

Table 3 : Single-value germination indices implemented in germinationmetrics.

-
[1] "Package 'pander' and pandoc are required to generate this table"
- + ++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Germination indexFunctionDetailsUnitMeasuresReference
Germination percentage or Final germination percentage or Germinability (\(GP\))GermPercentIt is computed as follows.
\[GP = \frac{N_{g}}{N_{t}} \times 100\]
+Where, \(N_{g}\) is the number of germinated seeds and \(N_{t}\) is the total number of seeds.
Percentage (%)Germination capacityISTA (2015)
Time for the first germination or Germination time lag (\(t_{0}\))FirstGermTimeIt is the time for first germination to occur (e.g. First day of germination)timeGermination time +Edwards (1932); Czabator (1962); Goloff and Bazzaz (1975); Labouriau (1983a); Ranal (1999); Quintanilla et al. (2000) +
Time for the last germination (\(t_{g}\))LastGermTimeIt is the time for last germination to occur (e.g. Last day of germination)timeGermination timeEdwards (1932)
Time spread of germination or Germination distributionTimeSpreadGermIt is the difference between time for last germination (\(t_{g}\)) and time for first germination (\(t_{0}\)).
\[Time\,spread\,of\, germination = t_{g}-t_{0}\] +
timeGermination time +Al-Mudaris (1998); Schrader and Graves (2000); Kader (2005) +
Peak period of germination or Modal time of germinationPeakGermTimeIt is the time in which highest frequency of germinated seeds are observed and need not be unique.timeGermination timeRanal and Santana (2006)
Median germination time (\(t_{50}\)) (Coolbear)t50It is the time to reach 50% of final/maximum germination.
+With argument method specified as "coolbear", it is computed as follows.
\[t_{50}=T_{i}+\frac{(\frac{N+1}{2}-N_{i})(T_{j}-T_{i})}{N_{j}-N_{i}}\]
+Where, \(t_{50}\) is the median germination time, \(N\) is the final number of germinated seeds, and \(N_{i}\) and \(N_{j}\) are the total number of seeds germinated in adjacent counts at time \(T_{i}\) and \(T_{j}\) respectively, when \(N_{i} < \frac{N + 1}{2} < N_{j}\).
timeGermination timeCoolbear et al. (1984)
Median germination time (\(t_{50}\)) (Farooq)t50With argument method specified as "farooq", it is computed as follows.
\[t_{50}=T_{i}+\frac{(\frac{N}{2}-N_{i})(T_{j}-T_{i})}{N_{j}-N_{i}}\]
+Where, \(t_{50}\) is the median germination time, \(N\) is the final number of germinated seeds, and \(N_{i}\) and \(N_{j}\) are the total number of seeds germinated in adjacent counts at time \(T_{i}\) and \(T_{j}\) respectively, when \(N_{i} < \frac{N}{2} < N_{j}\).
timeGermination timeFarooq et al. (2005)
Mean germination time or Mean length of incubation time (\(\overline{T}\)) or Germination resistance (\(GR\)) or Sprouting index (\(SI\)) or Emergence index (\(EI\))MeanGermTimeIt is the average length of time required for maximum germination of a seed lot and is estimated according to the following formula.
\[\overline{T} = +\frac{\sum_{i=1}^{k}N_{i}T_{i}}{\sum_{i=1}^{k}N_{i}}\]
+Where, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), and \(k\) is the total number of time intervals.
+It is the inverse of mean germination rate (\(\overline{V}\)).
\[\overline{T} = \frac{1}{\overline{V}}\] +
timeGermination time +Edmond and Drapala (1958); Czabator (1962); Smith and Millet (1964); Gordon (1969); Gordon (1971); Mock and Eberhart (1972); Ellis and Roberts (1980) Labouriau (1983a); Ranal and Santana (2006) +
Variance of germination time (\(s_{T}^{2}\))VarGermTimeIt is computed according to the following formula.
\[s_{T}^{2} = +\frac{\sum_{i=1}^{k}N_{i}(T_{i}-\overline{T})^{2}}{\sum_{i=1}^{k}N_{i}-1}\]
+Where, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), and \(k\) is the total number of time intervals.
timeGermination time +Labouriau (1983a); Ranal and Santana (2006) +
Standard error of germination time (\(s_{\overline{T}}\))SEGermTimeIt signifies the accuracy of the calculation of the mean germination time.
+It is estimated according to the following formula:
\[s_{\overline{T}} = +\sqrt{\frac{s_{T}^{2}}{\sum_{i=1}^{k}N_{i}}}\]
+Where, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval) and \(k\) is the total number of time intervals.
timeGermination time +Labouriau (1983a); Ranal and Santana (2006) +
Mean germination rate (\(\overline{V}\))MeanGermRateIt is computed according to the following formula:
\[\overline{V} = +\frac{\sum_{i=1}^{k}N_{i}}{\sum_{i=1}^{k}N_{i}T_{i}}\]
+Where, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), and \(k\) is the total number of time intervals.
+It is the inverse of mean germination time (\(\overline{T}\)).
\[\overline{V} = \frac{1}{\overline{T}}\] +
time-1 +Germination rate +Labouriau and Valadares (1976); Labouriau (1983b); Ranal and Santana (2006) +
Coefficient of velocity of germination (\(CVG\)) or Coefficient of rate of germination (\(CRG\)) or Kotowski’s coefficient of velocityCVGIt is estimated according to the following formula.
\[CVG = +\frac{\sum_{i=1}^{k}N_{i}}{\sum_{i=1}^{k}N_{i}T_{i}} +\times 100\]
\[CVG = \overline{V} \times 100\]
+Where, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), and \(k\) is the total number of time intervals.
% day -1 +Germination rate +Kotowski (1926), Nichols and Heydecker (1968); Bewley and Black (1994); Labouriau (1983b); Scott et al. (1984) +
Variance of germination rate (\(s_{V}^{2}\))VarGermRateIt is calculated according to the following formula.
\[s_{V}^{2} = \overline{V}^{4} \times s_{T}^{2}\]
+Where, \(s_{T}^{2}\) is the variance of germination time.
time-2 +Germination rate +Labouriau (1983b); Ranal and Santana (2006) +
Standard error of germination rate (\(s_{\overline{V}}\))SEGermRateIt is estimated according to the following formula.
\[s_{\overline{V}} = +\sqrt{\frac{s_{V}^{2}}{\sum_{i=1}^{k}N_{i}}}\]
+Where, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), and \(k\) is the total number of time intervals.
time-1 +Germination rate +Labouriau (1983b); Ranal and Santana (2006) +
Germination rate as the reciprocal of the median time (\(v_{50}\))GermRateRecipIt is the reciprocal of the median germination time (\(t_{50}\)).
\[v_{50} = \frac{1}{t_{50}}\] +
time-1 +Germination rate +Went (1957); Labouriau (1983b); Ranal and Santana (2006) +
Speed of germination or Germination rate Index or index of velocity of germination or Emergence rate index (Allan, Vogel and Peterson; Erbach; Hsu and Nelson) or Germination index (AOSA)GermSpeedIt is the rate of germination in terms of the total number of seeds that germinate in a time interval.
+It is estimated as follows.
\[S = \sum_{i=1}^{k}\frac{N_{i}}{T_{i}}\]
+Where, \(T_{i}\) is the time from the start of the experiment to the
\(i\)th interval, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), and \(k\) is the total number of time intervals.
+Instead of germination counts, germination percentages may also be used for computation of speed of germination.
% time-1 +Mixed +Throneberry and Smith (1955); Maguire (1962); Allan et al. (1962); Kendrick and Frankland (1969); Bouton et al. (1976); Erbach (1982); AOSA (1983); Khandakar and Bradbeer (1983); Hsu and Nelson (1986); Bradbeer (1988); Wardle et al. (1991) +
Speed of accumulated germinationGermSpeedAccumulatedIt is the rate of germination in terms of the accumulated/cumulative total number of seeds that germinate in a time interval.
+It is estimated as follows.
\[S_{accumulated} = +\sum_{i=1}^{k}\frac{\sum_{j=1}^{i}N_{j}}{T_{i}}\]
+Where, \(T_{i}\) is the time from the start of the experiment to the
\(i\)th interval, \(\sum_{j=1}^{i}N_{j}\) is the cumuative/accumulated number of seeds germinated in the \(i\)th interval, and \(k\) is the total number of time intervals.
+Instead of germination counts, germination percentages may also be used for computation of speed of germination.
% time-1 +Mixed +Bradbeer (1988); Wardle et al. (1991); Haugland and Brandsaeter (1996); Santana and Ranal (2004) +
Corrected germination rate indexGermSpeedCorrectedIt is computed as follows.
\[S_{corrected} = \frac{S}{FGP}\]
+Where, \(FGP\) is the final germination percentage or germinability.
time-1 +MixedEvetts and Burnside (1972)
Weighted germination percentage (\(WGP\))WeightGermPercentIt is estimated as follows.
\[WGP = \frac{\sum_{i=1}^{k}(k-i+1)N_{i}}{k \times +N} \times 100\]
+Where, \(N_{i}\) is the number of seeds that germinated in the time interval \(i\) (not cumulative, but partial count), \(N\) is the total number of seeds tested, and \(k\) is the total number of time intervals.
Mixed +Reddy et al. (1985); Reddy (1978) +
Mean germination percentage per unit time (\(\overline{GP}\))MeanGermPercentIt is estimated as follows.
\[\overline{GP} = \frac{GP}{T_{k}}\]
+Where, \(GP\) is the final germination percentage, \(T_{k}\) is the time at the \(k\)th time interval, and \(k\) is the total number of time intervals required for final germination.
MixedCzabator (1962)
Number of seeds germinated per unit time \(\overline{N}\) +MeanGermNumberIt is estimated as follows.
\[\overline{N} = \frac{N_{g}}{T_{k}}\]
+Where, \(N_{g}\) is the number of germinated seeds at the end of the germination test, \(T_{k}\) is the time at the \(k\)th time interval, and \(k\) is the total number of time intervals required for final germination.
MixedKhamassi et al. (2013)
Timson’s index [\(\sum 10\) (Ten summation), \(\sum 5\) or \(\sum 20\)] or Germination energy index (\(GEI\))TimsonsIndexIt is the progressive total of cumulative germination percentage recorded at specific intervals for a set period of time and is estimated in terms of cumulative germination percentage (\(G_{i}\)) as follows.
\[\Sigma k = \sum_{i=1}^{k}G_{i}\]
+Where, \(G_{i}\) is the cumulative germination percentage in time interval \(i\), and \(k\) is the total number of time intervals.
+It also estimated in terms of partial germination percentage as follows.
\[\Sigma k = \sum_{i=1}^{k}g_{i}(k-j)\]
+Where, \(g_{i}\) is the germination (not cumulative, but partial germination) in time interval \(i\) (\(i\) varying from \(0\) to \(k\)), \(k\) is the total number of time intervals, and \(j = i - 1\).
Mixed +Grose and Zimmer (1958); Timson (1965); Lyon and Coffelt (1966); Chaudhary and Ghildyal (1970); Negm and Smith (1978); Brown and Mayer (1988); Baskin and Baskin (1998); Goodchild and Walker (1971) +
Modified Timson’s index (\(\Sigma k_{mod}\)) (Labouriau)TimsonsIndexIt is estimated as Timson’s index \(\Sigma k\) divided by the sum of partial germination percentages.
\[\Sigma k_{mod} = \frac{\Sigma +k}{\sum_{i=1}^{k}g_{i}}\] +
MixedRanal and Santana (2006)
Modified Timson’s index (\(\Sigma k_{mod}\)) (Khan and Unger)TimsonsIndexIt is estimated as Timson’s index (\(\Sigma k\)) divided by the total time period of germination (\(T_{k}\)).
\[\Sigma k_{mod} = \frac{\Sigma k}{T_{k}}\] +
MixedKhan and Ungar (1984)
George’s index (\(GR\))GermRateGeorgeIt is estimated as follows.
\[GR = \sum_{i=1}^{k}N_{i}K_{i}\]
+Where \(N_{i}\) is the number of seeds germinated by \(i\)th interval and \(K_{i}\) is the number of intervals(eg. days) until the end of the test, and and \(k\) is the total number of time intervals.
Mixed +George (1961); Tucker and Wright (1965); Nichols and Heydecker (1968) +
Germination Index (\(GI\)) (Melville)GermIndexIt is estimated as follows.
\[GI = \sum_{i=1}^{k}\frac{\left | \left ( T_{k} - +T_{i} \right ) N_{i}\right |}{N_{t}}\]
+Where, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval (day for the example), \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), \(N_{t}\) is the total number of seeds used in the test, and \(k\) is the total number of time intervals.
MixedMelville et al. (1980)
Germination Index (\(GI_{mod}\)) (Melville; Santana and Ranal)GermIndexIt is estimated as follows.
\[GI_{mod} = \sum_{i=1}^{k}\frac{\left | \left ( +T_{k} - T_{i} \right ) N_{i}\right |}{N_{g}}\]
+Where, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval (day for the example), \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), \(N_{g}\) is the total number of germinated seeds at the end of the test, and \(k\) is the total number of time intervals.
Mixed +Melville et al. (1980); Santana and Ranal (2004); Ranal and Santana (2006) +
Emergence Rate Index (\(ERI\)) or Germination Rate Index (Shmueli and Goldberg)EmergenceRateIndexIt is estimated as follows.
\[ERI = \sum_{i=i_{0}}^{k-1}N_{i}(k-i)\]
+Where, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), \(i_{0}\) is the time interval when emergence/germination started, and \(k\) is the total number of time intervals.
MixedShmueli and Goldberg (1971)
Modified Emergence Rate Index (\(ERI_{mod}\)) or Modified Germination Rate Index (Shmueli and Goldberg; Santana and Ranal)EmergenceRateIndexIt is estimated by dividing Emergence rate index (\(ERI\)) by total number of emerged seedlings (or germinated seeds).
\[ERI_{mod} = +\frac{\sum_{i=i_{0}}^{k-1}N_{i}(k-i)}{N_{g}} = +\frac{ERI}{N_{g}}\]
+Where, \(N_{g}\) is the total number of germinated seeds at the end of the test, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), \(i_{0}\) is the time interval when emergence/germination started, and \(k\) is the total number of time intervals.
Mixed +Shmueli and Goldberg (1971); Santana and Ranal (2004); Ranal and Santana (2006) +
Emergence Rate Index (\(ERI\)) or Germination Rate Index (Bilbro & Wanjura)EmergenceRateIndexIt is the estimated as follows.
\[ERI = \frac{\sum_{i=1}^{k}N_{i}}{\overline{T}} = +\frac{N_{g}}{\overline{T}}\]
+Where, \(N_{g}\) is the total number of germinated seeds at the end of the test, \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), and \(\overline{T}\) is the mean germination time or mean emergence time.
MixedBilbro and Wanjura (1982)
Emergence Rate Index (\(ERI\)) or Germination Rate Index (Fakorede)EmergenceRateIndexIt is estimated as follows.
\[ERI = \frac{\overline{T}}{FGP/100}\]
+Where, \(\overline{T}\) is the Mean germination time and \(FGP\) is the final germination time.
Mixed +Fakorede and Ayoola (1980); Fakorede and Ojo (1981); Fakorede and Agbana (1983) +
Peak value(\(PV\)) (Czabator) or Emergence Energy (\(EE\))PeakValueIt is the accumulated number of seeds germinated at the point on the germination curve at which the rate of germination starts to decrease. It is computed as the maximum quotient obtained by dividing successive cumulative germination values by the relevant incubation time.
\[PV = \max\left ( +\frac{G_{1}}{T_{1}},\frac{G_{2}}{T_{2}},\cdots +\frac{G_{k}}{T_{k}} \right )\]
+Where, \(T_{i}\) is the time from the start of the experiment to the
\(i\)th interval, \(G_{i}\) is the cumulative germination percentage in the \(i\)th time interval, and \(k\) is the total number of time intervals.
% time-1 +Mixed +Czabator (1962); Bonner (1967) +
Germination value (\(GV\)) (Czabator)GermValueIt is computed as follows.
\[GV = PV \times MDG\]
+Where, \(PV\) is the peak value and \(MDG\) is the mean daily germination percentage from the onset of germination.
+It can also be computed for other time intervals of successive germination counts, by replacing \(MDG\) with the mean germination percentage per unit time (\(\overline{GP}\)).
\(GV\) value can be modified (\(GV_{mod}\)), to consider the entire duration from the beginning of the test instead of just from the onset of germination.
Mixed +Czabator (1962); Brown and Mayer (1988) +
Germination value (\(GV\)) (Diavanshir and Pourbiek)GermValueIt is computed as follows.
\[GV = \frac{\sum DGS}{N} \times GP \times c\]
+Where, \(DGS\) is the daily germination speed computed by dividing cumulative germination percentage by the number of days since the since the onset of germination, \(N\) is the frequency or number of DGS calculated during the test, \(GP\) is the germination percentage expressed over 100, and \(c\) is a constant. The value of \(c\) is decided on the basis of average daily speed of germination (\(\frac{\sum DGS}{N}\)). If it is less than 10, then \(c\) value of 10 can be used and if it is more than 10, then value of 7 or 8 can be used for \(c\).
\(GV\) value can be modified (\(GV_{mod}\)), to consider the entire duration from the beginning of the test instead of just from the onset of germination.
Mixed +Djavanshir and Pourbeik (1976); Brown and Mayer (1988) +
Coefficient of uniformity of germination (\(CUG\))CUGermIt is computed as follows.
\[CUG = +\frac{\sum_{i=1}^{k}N_{i}}{\sum_{i=1}^{k}(\overline{T}-T_{i})^{2}N_{i}}\]
+Where, \(\overline{T}\) is the the mean germination time, \(T_{i}\) is the time from the start of the experiment to the \(i\)th interval (day for the example), \(N_{i}\) is the number of seeds germinated in the \(i\)th time interval (not the accumulated number, but the number corresponding to the \(i\)th interval), and \(k\) is the total number of time intervals.
Germination unifromity +Heydecker (1972); Bewley and Black (1994) +
Coefficient of variation of the germination time (\(CV_{T}\))CVGermTimeIt is estimated as follows.
\[CV_{T} = +\sqrt{\frac{s_{T}^{2}}{\overline{T}}}\]
+Where, \(s_{T}^{2}\) is the variance of germination time and \(\overline{T}\) is the mean germination time.
Germination unifromity +Gomes (1960); Ranal and Santana (2006) +
Synchronization index (\(\overline{E}\)) or Uncertainty of the germination process (\(U\)) or informational entropy (\(H\))GermUncertaintyIt is estimated as follows.
\[\overline{E} = +-\sum_{i=1}^{k}f_{i}\log_{2}f_{i}\]
+Where, \(f_{i}\) is the relative frequency of germination (\(f_{i}=\frac{N_{i}}{\sum_{i=1}^{k}N_{i}}\)), \(N_{i}\) is the number of seeds germinated on the \(i\)th time interval, and \(k\) is the total number of time intervals.
bitGermination synchrony +Shannon (1948); Labouriau and Valadares (1976); Labouriau (1983b) +
Synchrony of germination (\(Z\) index)GermSynchronyIt is computed as follows.
\[Z=\frac{\sum_{i=1}^{k}C_{N_{i},2}}{C_{\Sigma +N_{i},2}}\]
+Where, \(C_{N_{i},2}\) is the partial combination of the two germinated seeds from among \(N_{i}\), the number of seeds germinated on the \(i\)th time interval (estimated as \(C_{N_{i},2}=\frac{N_{i}(N_{i}-1)}{2}\)), and \(C_{\Sigma N_{i},2}\) is the partial combination of the two germinated seeds from among the total number of seeds germinated at the final count, assuming that all seeds that germinated did so simultaneously.
Germination synchrony +Primack (1985); Ranal and Santana (2006) +

@@ -306,16 +757,16 @@

GermPercent()

-
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
+
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
 y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
 
 # From partial germination counts
 GermPercent(germ.counts = x, total.seeds = 50)
[1] 80
-
# From cumulative germination counts
+
# From cumulative germination counts
 GermPercent(germ.counts = y, total.seeds = 50, partial = FALSE)
[1] 80
-
# From number of germinated seeds
+
# From number of germinated seeds
 GermPercent(germinated.seeds = 40, total.seeds = 50)
[1] 80
@@ -323,7 +774,7 @@

FirstGermTime(), LastGermTime(), PeakGermTime(), TimeSpreadGerm()

-
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
+
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
 y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
 z <- c(0, 0, 0, 0, 11, 11, 9, 7, 1, 0, 1, 0, 0, 0)
 int <- 1:length(x)
@@ -332,28 +783,28 @@ 

#---------------------------------------------------------------------------- FirstGermTime(germ.counts = x, intervals = int)

[1] 5
-
LastGermTime(germ.counts = x, intervals = int)
+
LastGermTime(germ.counts = x, intervals = int)
[1] 11
-
TimeSpreadGerm(germ.counts = x, intervals = int)
+
TimeSpreadGerm(germ.counts = x, intervals = int)
[1] 6
-
PeakGermTime(germ.counts = x, intervals = int)
+
PeakGermTime(germ.counts = x, intervals = int)
[1] 6
-
# For multiple peak germination times
+
# For multiple peak germination times
 PeakGermTime(germ.counts = z, intervals = int)
Warning in PeakGermTime(germ.counts = z, intervals = int): Multiple peak
 germination times exist.
[1] 5 6
-
# From cumulative germination counts
+
# From cumulative germination counts
 #----------------------------------------------------------------------------
 FirstGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 5
-
LastGermTime(germ.counts = y, intervals = int, partial = FALSE)
+
LastGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 11
-
TimeSpreadGerm(germ.counts = y, intervals = int, partial = FALSE)
+
TimeSpreadGerm(germ.counts = y, intervals = int, partial = FALSE)
[1] 6
-
PeakGermTime(germ.counts = y, intervals = int, partial = FALSE)
+
PeakGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 6
-
# For multiple peak germination time
+
# For multiple peak germination time
 PeakGermTime(germ.counts = cumsum(z), intervals = int, partial = FALSE)
Warning in PeakGermTime(germ.counts = cumsum(z), intervals = int, partial =
 FALSE): Multiple peak germination times exist.
@@ -363,7 +814,7 @@

t50()

-
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
+
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
 y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
 int <- 1:length(x)
 
@@ -371,20 +822,20 @@ 

#---------------------------------------------------------------------------- t50(germ.counts = x, intervals = int, method = "coolbear")

[1] 5.970588
-
t50(germ.counts = x, intervals = int, method = "farooq")
+
t50(germ.counts = x, intervals = int, method = "farooq")
[1] 5.941176
-
# From cumulative germination counts
+
# From cumulative germination counts
 #----------------------------------------------------------------------------
 t50(germ.counts = y, intervals = int, partial = FALSE, method = "coolbear")
[1] 5.970588
-
t50(germ.counts = y, intervals = int, partial = FALSE, method = "farooq")
+
t50(germ.counts = y, intervals = int, partial = FALSE, method = "farooq")
[1] 5.941176

MeanGermTime(), VarGermTime(), SEGermTime(), CVGermTime()

-
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
+
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
 y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
 int <- 1:length(x)
 
@@ -392,28 +843,28 @@ 

#---------------------------------------------------------------------------- MeanGermTime(germ.counts = x, intervals = int)

[1] 6.7
-
VarGermTime(germ.counts = x, intervals = int)
+
VarGermTime(germ.counts = x, intervals = int)
[1] 1.446154
-
SEGermTime(germ.counts = x, intervals = int)
+
SEGermTime(germ.counts = x, intervals = int)
[1] 0.1901416
-
CVGermTime(germ.counts = x, intervals = int)
+
CVGermTime(germ.counts = x, intervals = int)
[1] 0.1794868
-
# From cumulative germination counts
+
# From cumulative germination counts
 #----------------------------------------------------------------------------
 MeanGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 6.7
-
VarGermTime(germ.counts = y, intervals = int, partial = FALSE)
+
VarGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 19.04012
-
SEGermTime(germ.counts = y, intervals = int, partial = FALSE)
+
SEGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.2394781
-
CVGermTime(germ.counts = y, intervals = int, partial = FALSE)
+
CVGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.6512685

MeanGermRate(), CVG(), VarGermRate(), SEGermRate(), GermRateRecip()

-
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
+
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
 y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
 int <- 1:length(x)
 
@@ -421,30 +872,30 @@ 

#---------------------------------------------------------------------------- MeanGermRate(germ.counts = x, intervals = int)

[1] 0.1492537
-
CVG(germ.counts = x, intervals = int)
+
CVG(germ.counts = x, intervals = int)
[1] 14.92537
-
VarGermRate(germ.counts = x, intervals = int)
+
VarGermRate(germ.counts = x, intervals = int)
[1] 0.0007176543
-
SEGermRate(germ.counts = x, intervals = int)
+
SEGermRate(germ.counts = x, intervals = int)
[1] 0.004235724
-
GermRateRecip(germ.counts = x, intervals = int, method = "coolbear")
+
GermRateRecip(germ.counts = x, intervals = int, method = "coolbear")
[1] 0.1674877
-
GermRateRecip(germ.counts = x, intervals = int, method = "farooq")
+
GermRateRecip(germ.counts = x, intervals = int, method = "farooq")
[1] 0.1683168
-
# From cumulative germination counts
+
# From cumulative germination counts
 #----------------------------------------------------------------------------
 MeanGermRate(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.1492537
-
CVG(germ.counts = y, intervals = int, partial = FALSE)
+
CVG(germ.counts = y, intervals = int, partial = FALSE)
[1] 14.92537
-
VarGermRate(germ.counts = y, intervals = int, partial = FALSE)
+
VarGermRate(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.009448666
-
SEGermRate(germ.counts = y, intervals = int, partial = FALSE)
+
SEGermRate(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.005334776
-
GermRateRecip(germ.counts = y, intervals = int,
+
GermRateRecip(germ.counts = y, intervals = int,
               method = "coolbear", partial = FALSE)
[1] 0.1674877
-
GermRateRecip(germ.counts = y, intervals = int,
+
GermRateRecip(germ.counts = y, intervals = int,
               method = "farooq", partial = FALSE)
[1] 0.1683168
@@ -452,7 +903,7 @@

GermSpeed(), GermSpeedAccumulated(), GermSpeedCorrected()

-
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
+
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
 y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
 int <- 1:length(x)
 
@@ -460,40 +911,40 @@ 

#---------------------------------------------------------------------------- GermSpeed(germ.counts = x, intervals = int)

[1] 6.138925
-
GermSpeedAccumulated(germ.counts = x, intervals = int)
+
GermSpeedAccumulated(germ.counts = x, intervals = int)
[1] 34.61567
-
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50,
+
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50,
                    method = "normal")
[1] 0.07673656
-
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50,
+
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50,
                    method = "accumulated")
[1] 0.4326958
-
# From partial germination counts (with percentages instead of counts)
+
# From partial germination counts (with percentages instead of counts)
 #----------------------------------------------------------------------------
 GermSpeed(germ.counts = x, intervals = int,
           percent = TRUE, total.seeds = 50)
[1] 12.27785
-
GermSpeedAccumulated(germ.counts = x, intervals = int,
+
GermSpeedAccumulated(germ.counts = x, intervals = int,
                      percent = TRUE, total.seeds = 50)
[1] 69.23134
-
# From cumulative germination counts
+
# From cumulative germination counts
 #----------------------------------------------------------------------------
 GermSpeed(germ.counts = y, intervals = int, partial = FALSE)
[1] 6.138925
-
GermSpeedAccumulated(germ.counts = y, intervals = int, partial = FALSE)
+
GermSpeedAccumulated(germ.counts = y, intervals = int, partial = FALSE)
[1] 34.61567
-
GermSpeedCorrected(germ.counts = y, intervals = int,
+
GermSpeedCorrected(germ.counts = y, intervals = int,
                    partial = FALSE, total.seeds = 50, method = "normal")
[1] 0.07673656
-
GermSpeedCorrected(germ.counts = y, intervals = int,
+
GermSpeedCorrected(germ.counts = y, intervals = int,
                    partial = FALSE, total.seeds = 50, method = "accumulated")
[1] 0.4326958
-
# From cumulative germination counts (with percentages instead of counts)
+
# From cumulative germination counts (with percentages instead of counts)
 #----------------------------------------------------------------------------
 GermSpeed(germ.counts = y, intervals = int, partial = FALSE,
           percent = TRUE, total.seeds = 50)
[1] 12.27785
-
GermSpeedAccumulated(germ.counts = y, intervals = int, partial = FALSE,
+
GermSpeedAccumulated(germ.counts = y, intervals = int, partial = FALSE,
                      percent = TRUE, total.seeds = 50)
[1] 69.23134
@@ -501,7 +952,7 @@

GermSpeed(), GermSpeedAccumulated(), GermSpeedCorrected()

-
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
+
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
 y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
 int <- 1:length(x)
 
@@ -509,40 +960,40 @@ 

#---------------------------------------------------------------------------- GermSpeed(germ.counts = x, intervals = int)

[1] 6.138925
-
GermSpeedAccumulated(germ.counts = x, intervals = int)
+
GermSpeedAccumulated(germ.counts = x, intervals = int)
[1] 34.61567
-
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50,
+
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50,
                    method = "normal")
[1] 0.07673656
-
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50,
+
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50,
                    method = "accumulated")
[1] 0.4326958
-
# From partial germination counts (with percentages instead of counts)
+
# From partial germination counts (with percentages instead of counts)
 #----------------------------------------------------------------------------
 GermSpeed(germ.counts = x, intervals = int,
           percent = TRUE, total.seeds = 50)
[1] 12.27785
-
GermSpeedAccumulated(germ.counts = x, intervals = int,
+
GermSpeedAccumulated(germ.counts = x, intervals = int,
                      percent = TRUE, total.seeds = 50)
[1] 69.23134
-
# From cumulative germination counts
+
# From cumulative germination counts
 #----------------------------------------------------------------------------
 GermSpeed(germ.counts = y, intervals = int, partial = FALSE)
[1] 6.138925
-
GermSpeedAccumulated(germ.counts = y, intervals = int, partial = FALSE)
+
GermSpeedAccumulated(germ.counts = y, intervals = int, partial = FALSE)
[1] 34.61567
-
GermSpeedCorrected(germ.counts = y, intervals = int,
+
GermSpeedCorrected(germ.counts = y, intervals = int,
                    partial = FALSE, total.seeds = 50, method = "normal")
[1] 0.07673656
-
GermSpeedCorrected(germ.counts = y, intervals = int,
+
GermSpeedCorrected(germ.counts = y, intervals = int,
                    partial = FALSE, total.seeds = 50, method = "accumulated")
[1] 0.4326958
-
# From cumulative germination counts (with percentages instead of counts)
+
# From cumulative germination counts (with percentages instead of counts)
 #----------------------------------------------------------------------------
 GermSpeed(germ.counts = y, intervals = int, partial = FALSE,
           percent = TRUE, total.seeds = 50)
[1] 12.27785
-
GermSpeedAccumulated(germ.counts = y, intervals = int, partial = FALSE,
+
GermSpeedAccumulated(germ.counts = y, intervals = int, partial = FALSE,
                      percent = TRUE, total.seeds = 50)
[1] 69.23134
@@ -550,7 +1001,7 @@

WeightGermPercent()

-
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
+
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
 y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
 int <- 1:length(x)
 
@@ -558,7 +1009,7 @@ 

#---------------------------------------------------------------------------- WeightGermPercent(germ.counts = x, total.seeds = 50, intervals = int)

[1] 47.42857
-
# From cumulative germination counts
+
# From cumulative germination counts
 #----------------------------------------------------------------------------
 WeightGermPercent(germ.counts = y, total.seeds = 50, intervals = int,
                   partial = FALSE)
@@ -568,7 +1019,7 @@

MeanGermPercent(), MeanGermNumber()

-
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
+
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
 y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
 int <- 1:length(x)
 
@@ -576,15 +1027,15 @@ 

#---------------------------------------------------------------------------- MeanGermPercent(germ.counts = x, total.seeds = 50, intervals = int)

[1] 5.714286
-
MeanGermNumber(germ.counts = x, intervals = int)
+
MeanGermNumber(germ.counts = x, intervals = int)
[1] 2.857143
-
# From cumulative germination counts
+
# From cumulative germination counts
 #----------------------------------------------------------------------------
 MeanGermPercent(germ.counts = y, total.seeds = 50, intervals = int, partial = FALSE)
[1] 5.714286
-
MeanGermNumber(germ.counts = y, intervals = int, partial = FALSE)
+
MeanGermNumber(germ.counts = y, intervals = int, partial = FALSE)
[1] 2.857143
-
# From number of germinated seeds
+
# From number of germinated seeds
 #----------------------------------------------------------------------------
 MeanGermPercent(germinated.seeds = 40, total.seeds = 50, intervals = int)
[1] 5.714286
@@ -593,7 +1044,7 @@

TimsonsIndex(), GermRateGeorge()

-
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
+
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
 y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
 int <- 1:length(x)
 
@@ -602,73 +1053,73 @@ 

# Wihout max specified TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50)

[1] 664
-
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
+
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
              modification = "none")
[1] 664
-
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
+
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
              modification = "labouriau")
[1] 8.3
-
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
+
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
              modification = "khanungar")
[1] 47.42857
-
GermRateGeorge(germ.counts = x, intervals = int)
+
GermRateGeorge(germ.counts = x, intervals = int)
[1] 332
-
# With max specified
+
# With max specified
 TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50, max = 10)
[1] 344
-
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
+
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
              max = 10, modification = "none")
[1] 344
-
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
+
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
              max = 10, modification = "labouriau")
[1] 4.410256
-
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
+
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
              max = 10, modification = "khanungar")
[1] 24.57143
-
GermRateGeorge(germ.counts = x, intervals = int, max = 10)
+
GermRateGeorge(germ.counts = x, intervals = int, max = 10)
[1] 172
-
GermRateGeorge(germ.counts = x, intervals = int, max = 14)
+
GermRateGeorge(germ.counts = x, intervals = int, max = 14)
[1] 332
-
# From cumulative germination counts
+
# From cumulative germination counts
 #----------------------------------------------------------------------------
 # Wihout max specified
 TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
              total.seeds = 50)
[1] 664
-
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
+
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
              total.seeds = 50,
              modification = "none")
[1] 664
-
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
+
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
              total.seeds = 50,
              modification = "labouriau")
[1] 8.3
-
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
+
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
              total.seeds = 50,
              modification = "khanungar")
[1] 47.42857
-
GermRateGeorge(germ.counts = y, intervals = int, partial = FALSE,)
+
GermRateGeorge(germ.counts = y, intervals = int, partial = FALSE,)
[1] 332
-
# With max specified
+
# With max specified
 TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
              total.seeds = 50, max = 10)
[1] 344
-
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
+
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
              total.seeds = 50,
              max = 10, modification = "none")
[1] 344
-
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
+
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
              total.seeds = 50,
              max = 10, modification = "labouriau")
[1] 4.410256
-
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
+
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
              total.seeds = 50,
              max = 10, modification = "khanungar")
[1] 24.57143
-
GermRateGeorge(germ.counts = y, intervals = int, partial = FALSE,
+
GermRateGeorge(germ.counts = y, intervals = int, partial = FALSE,
                max = 10)
[1] 172
-
GermRateGeorge(germ.counts = y, intervals = int, partial = FALSE,
+
GermRateGeorge(germ.counts = y, intervals = int, partial = FALSE,
                max = 14)
[1] 332
@@ -676,7 +1127,7 @@

GermIndex()

-
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
+
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
 y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
 int <- 1:length(x)
 
@@ -684,22 +1135,22 @@ 

#---------------------------------------------------------------------------- GermIndex(germ.counts = x, intervals = int, total.seeds = 50)

[1] 5.84
-
GermIndex(germ.counts = x, intervals = int, total.seeds = 50,
+
GermIndex(germ.counts = x, intervals = int, total.seeds = 50,
           modification = "none")
[1] 5.84
-
GermIndex(germ.counts = x, intervals = int, total.seeds = 50,
+
GermIndex(germ.counts = x, intervals = int, total.seeds = 50,
           modification = "santanaranal")
[1] 7.3
-
# From cumulative germination counts
+
# From cumulative germination counts
 #----------------------------------------------------------------------------
 GermIndex(germ.counts = y, intervals = int, partial = FALSE,
           total.seeds = 50)
[1] 5.84
-
GermIndex(germ.counts = y, intervals = int, partial = FALSE,
+
GermIndex(germ.counts = y, intervals = int, partial = FALSE,
           total.seeds = 50,
           modification = "none")
[1] 5.84
-
GermIndex(germ.counts = y, intervals = int, partial = FALSE,
+
GermIndex(germ.counts = y, intervals = int, partial = FALSE,
           total.seeds = 50,
           modification = "santanaranal")
[1] 7.3
@@ -708,7 +1159,7 @@

EmergenceRateIndex()

-
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
+
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
 y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
 int <- 1:length(x)
 
@@ -716,32 +1167,32 @@ 

#---------------------------------------------------------------------------- EmergenceRateIndex(germ.counts = x, intervals = int)

[1] 292
-
EmergenceRateIndex(germ.counts = x, intervals = int,
+
EmergenceRateIndex(germ.counts = x, intervals = int,
                    method = "melville")
[1] 292
-
EmergenceRateIndex(germ.counts = x, intervals = int,
+
EmergenceRateIndex(germ.counts = x, intervals = int,
                    method = "melvillesantanaranal")
[1] 7.3
-
EmergenceRateIndex(germ.counts = x, intervals = int,
+
EmergenceRateIndex(germ.counts = x, intervals = int,
                    method = "bilbrowanjura")
[1] 5.970149
-
EmergenceRateIndex(germ.counts = x, intervals = int,
+
EmergenceRateIndex(germ.counts = x, intervals = int,
                    total.seeds = 50, method = "fakorede")
[1] 8.375
-
# From cumulative germination counts
+
# From cumulative germination counts
 #----------------------------------------------------------------------------
 EmergenceRateIndex(germ.counts = y, intervals = int, partial = FALSE,)
[1] 292
-
EmergenceRateIndex(germ.counts = y, intervals = int, partial = FALSE,
+
EmergenceRateIndex(germ.counts = y, intervals = int, partial = FALSE,
                    method = "melville")
[1] 292
-
EmergenceRateIndex(germ.counts = y, intervals = int, partial = FALSE,
+
EmergenceRateIndex(germ.counts = y, intervals = int, partial = FALSE,
                    method = "melvillesantanaranal")
[1] 7.3
-
EmergenceRateIndex(germ.counts = y, intervals = int, partial = FALSE,
+
EmergenceRateIndex(germ.counts = y, intervals = int, partial = FALSE,
                    method = "bilbrowanjura")
[1] 5.970149
-
EmergenceRateIndex(germ.counts = y, intervals = int, partial = FALSE,
+
EmergenceRateIndex(germ.counts = y, intervals = int, partial = FALSE,
                    total.seeds = 50, method = "fakorede")
[1] 8.375
@@ -749,7 +1200,7 @@

PeakValue(), GermValue()

-
x <- c(0, 0, 34, 40, 21, 10, 4, 5, 3, 5, 8, 7, 7, 6, 6, 4, 0, 2, 0, 2)
+
x <- c(0, 0, 34, 40, 21, 10, 4, 5, 3, 5, 8, 7, 7, 6, 6, 4, 0, 2, 0, 2)
 y <- c(0, 0, 34, 74, 95, 105, 109, 114, 117, 122, 130, 137, 144, 150,
       156, 160, 160, 162, 162, 164)
 int <- 1:length(x)
@@ -759,7 +1210,7 @@ 

#---------------------------------------------------------------------------- PeakValue(germ.counts = x, intervals = int, total.seeds = 200)

[1] 9.5
-
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
+
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
           method = "czabator")
$`Germination Value`
 [1] 38.95
@@ -803,7 +1254,7 @@ 

18 4.500000 19 4.263158 20 4.100000

-
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
+
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
           method = "dp", k = 10)
$`Germination Value`
 [1] 53.36595
@@ -850,7 +1301,7 @@ 

$testend [1] 16

-
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
+
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
           method = "czabator", from.onset = FALSE)
$`Germination Value`
 [1] 38.95
@@ -898,7 +1349,7 @@ 

18 4.500000 19 4.263158 20 4.100000

-
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
+
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
           method = "dp", k = 10, from.onset = FALSE)
$`Germination Value`
 [1] 46.6952
@@ -949,12 +1400,12 @@ 

$testend [1] 16

-
# From cumulative germination counts
+
# From cumulative germination counts
 #----------------------------------------------------------------------------
 PeakValue(germ.counts = y, interval = int, total.seeds = 200,
           partial = FALSE)
[1] 9.5
-
GermValue(germ.counts = y, intervals = int, total.seeds = 200,
+
GermValue(germ.counts = y, intervals = int, total.seeds = 200,
           partial = FALSE, method = "czabator")
$`Germination Value`
 [1] 38.95
@@ -998,7 +1449,7 @@ 

18 4.500000 19 4.263158 20 4.100000

-
GermValue(germ.counts = y, intervals = int, total.seeds = 200,
+
GermValue(germ.counts = y, intervals = int, total.seeds = 200,
           partial = FALSE, method = "dp", k = 10)
$`Germination Value`
 [1] 53.36595
@@ -1045,7 +1496,7 @@ 

$testend [1] 16

-
GermValue(germ.counts = y, intervals = int, total.seeds = 200,
+
GermValue(germ.counts = y, intervals = int, total.seeds = 200,
           partial = FALSE, method = "czabator", from.onset = FALSE)
$`Germination Value`
 [1] 38.95
@@ -1093,7 +1544,7 @@ 

18 4.500000 19 4.263158 20 4.100000

-
GermValue(germ.counts = y, intervals = int, total.seeds = 200,
+
GermValue(germ.counts = y, intervals = int, total.seeds = 200,
           partial = FALSE, method = "dp", k = 10, from.onset = FALSE)
$`Germination Value`
 [1] 46.6952
@@ -1149,7 +1600,7 @@ 

CUGerm()

-
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
+
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
 y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
 int <- 1:length(x)
 
@@ -1157,7 +1608,7 @@ 

#---------------------------------------------------------------------------- CUGerm(germ.counts = x, intervals = int)

[1] 0.7092199
-
# From cumulative germination counts
+
# From cumulative germination counts
 #----------------------------------------------------------------------------
 CUGerm(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.05267935
@@ -1166,7 +1617,7 @@

GermSynchrony(), GermUncertainty()

-
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
+
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
 y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
 int <- 1:length(x)
 
@@ -1174,13 +1625,13 @@ 

#---------------------------------------------------------------------------- GermSynchrony(germ.counts = x, intervals = int)

[1] 0.2666667
-
GermUncertainty(germ.counts = x, intervals = int)
+
GermUncertainty(germ.counts = x, intervals = int)
[1] 2.062987
-
# From cumulative germination counts
+
# From cumulative germination counts
 #----------------------------------------------------------------------------
 GermSynchrony(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.2666667
-
GermUncertainty(germ.counts = y, intervals = int, partial = FALSE)
+
GermUncertainty(germ.counts = y, intervals = int, partial = FALSE)
[1] 2.062987
@@ -1198,7 +1649,117 @@

The details of various parameters that are computed from this function are given in Table 4.

Table 4 Germination parameters estimated from the four-parameter hill function.

-
[1] "Package 'pander' and pandoc are required to generate this table"
+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Germination parametersDetailsUnitMeasures
y intercept (\(y_{0}\))The intercept on the y axis.
Asymptote (\(a\))It is the maximum cumulative germination percentage, which is equivalent to germination capacity.%Germination capacity
Shape and steepness (\(b\))Mathematical parameter controlling the shape and steepness of the germination curve. The larger the \(b\) , the steeper the rise toward the asymptote \(a\), and the shorter the time between germination onset and maximum germination.Germination rate
Half-maximal activation level (\(c\))Time required for 50% of viable seeds to germinate.timeGermination time
\(lag\)It is the time at germination onset and is computed by solving four-parameter hill function after setting y to 0 as follows.
\[lag = b\sqrt{\frac{-y_{0}c^{b}}{a + y_{0}}}\] +
timeGermination time
\(D_{lag-50}\)The duration between the time at germination onset (\(lag\)) and that at 50% germination (\(c\)).timeGermination time
\(t_{50_{total}}\)Time required for 50% of total seeds to germinate.timeGermination time
\(t_{50_{germinated}}\)Time required for 50% of viable/germinated seeds to germinatetimeGermination time
\(t_{x_{total}}\)Time required for \(x\)% of total seeds to germinate.timeGermination time
\(t_{x_{germinated}}\)Time required for \(x\)% of viable/germinated seeds to germinatetimeGermination time
Uniformity (\(U_{t_{max}-t_{min}}\))It is the time interval between the percentages of viable seeds specified in the arguments umin and umin to germinate.timeGermination time
Time at maximum germination rate (\(TMGR\))The partial derivative of the four-parameter hill function gives the instantaneous rate of germination (\(s\)) as follows.
\[s = \frac{\partial y}{\partial x} = +\frac{abc^{b}x^{b-1}}{(c^{b}+x^{b})^{2}}\]
+From this function for instantaneous rate of germination, \(TMGR\) can be estimated as follows.
\[TMGR = b \sqrt{\frac{c^{b}(b-1)}{b+1}}\]
+It represents the point in time when the instantaneous rate of germination starts to decline.
timeGermination time
Area under the curve (\(AUC\))It is obtained by integration of the fitted curve between time 0 and time specified in the argument tmax.Mixed
\(MGT\)Calculated by integration of the fitted curve and proper normalisation.timeGermination time
\(Skewness\)It is computed as follows.
\[\frac{MGT}{t_{50_{germinated}}}\] +

Examples

@@ -1207,7 +1768,7 @@

FourPHFfit()

-
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
+
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
 y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
 int <- 1:length(x)
 total.seeds = 50
@@ -1234,9 +1795,9 @@ 

$Parameters term estimate std.error statistic p.value -1 a 80.000000 1.24158595 64.43372 1.973240e-14 -2 b 9.881947 0.70779379 13.96162 6.952322e-08 -3 c 6.034954 0.04952654 121.85294 3.399385e-17 +1 a 80.000000 1.24158597 64.43372 1.973240e-14 +2 b 9.881947 0.70779381 13.96162 6.952324e-08 +3 c 6.034954 0.04952654 121.85294 3.399384e-17 4 y0 0.000000 0.91607007 0.00000 1.000000e+00 $Fit @@ -1299,7 +1860,7 @@

attr(,"class") [1] "FourPHFfit"

-
# From cumulative germination counts
+
# From cumulative germination counts
 #----------------------------------------------------------------------------
 FourPHFfit(germ.counts = y, intervals = int, total.seeds = 50, tmax = 20,
 partial = FALSE)
@@ -1387,43 +1948,40 @@

attr(,"class") [1] "FourPHFfit"

-
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
-y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
-int <- 1:length(x)
-total.seeds = 50
-
-# From partial germination counts
-#----------------------------------------------------------------------------
-fit1 <- FourPHFfit(germ.counts = x, intervals = int,
-                   total.seeds = 50, tmax = 20)
-
-# From cumulative germination counts
-#----------------------------------------------------------------------------
-fit2 <- FourPHFfit(germ.counts = y, intervals = int,
-                   total.seeds = 50, tmax = 20, partial = FALSE)
-
-# Default plots
-plot(fit1)
-

-
plot(fit2)
-

-
# No labels
-plot(fit1, plotlabels = FALSE)
-

-
plot(fit2, plotlabels = FALSE)
-

-
# Only the FPHF curve
-plot(fit1, rog = FALSE, t50.total = FALSE, t50.germ = FALSE,
-     tmgr = FALSE, mgt = FALSE, uniformity = FALSE)
-

-
plot(fit2, rog = FALSE, t50.total = FALSE, t50.germ = FALSE,
-     tmgr = FALSE, mgt = FALSE, uniformity = FALSE)
-

-
# Without y axis limits adjustment
-plot(fit1, limits = FALSE)
-

-
plot(fit2, limits = FALSE)
-

+
## No test: 
+##D x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
+##D y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
+##D int <- 1:length(x)
+##D total.seeds = 50
+##D 
+##D # From partial germination counts
+##D #----------------------------------------------------------------------------
+##D fit1 <- FourPHFfit(germ.counts = x, intervals = int,
+##D                    total.seeds = 50, tmax = 20)
+##D 
+##D # From cumulative germination counts
+##D #----------------------------------------------------------------------------
+##D fit2 <- FourPHFfit(germ.counts = y, intervals = int,
+##D                    total.seeds = 50, tmax = 20, partial = FALSE)
+##D 
+##D # Default plots
+##D plot(fit1)
+##D plot(fit2)
+##D 
+##D # No labels
+##D plot(fit1, plotlabels = FALSE)
+##D plot(fit2, plotlabels = FALSE)
+##D 
+##D # Only the FPHF curve
+##D plot(fit1, rog = FALSE, t50.total = FALSE, t50.germ = FALSE,
+##D      tmgr = FALSE, mgt = FALSE, uniformity = FALSE)
+##D plot(fit2, rog = FALSE, t50.total = FALSE, t50.germ = FALSE,
+##D      tmgr = FALSE, mgt = FALSE, uniformity = FALSE)
+##D 
+##D # Without y axis limits adjustment
+##D plot(fit1, limits = FALSE)
+##D plot(fit2, limits = FALSE)
+## End(No test)
@@ -1436,319 +1994,35 @@

germination.indices()

This wrapper function can be used to compute several germination indices simultaneously for multiple samples in batch.

-
data(gcdata)
-
-counts.per.intervals <- c("Day01", "Day02", "Day03", "Day04", "Day05",
-                          "Day06", "Day07", "Day08", "Day09", "Day10",
-                          "Day11", "Day12", "Day13", "Day14")
-germination.indices(gcdata, total.seeds.col = "Total Seeds",
-                    counts.intervals.cols = counts.per.intervals,
-                    intervals = 1:14, partial = TRUE, max.int = 5)
-
   Genotype Rep Day01 Day02 Day03 Day04 Day05 Day06 Day07 Day08 Day09 Day10
-1        G1   1     0     0     0     0     4    17    10     7     1     0
-2        G2   1     0     0     0     1     3    15    13     6     2     1
-3        G3   1     0     0     0     2     3    18     9     8     2     1
-4        G4   1     0     0     0     0     4    19    12     6     2     1
-5        G5   1     0     0     0     0     5    20    12     8     1     0
-6        G1   2     0     0     0     0     3    21    11     7     1     1
-7        G2   2     0     0     0     0     4    18    11     7     1     0
-8        G3   2     0     0     0     1     3    14    12     6     2     1
-9        G4   2     0     0     0     1     3    19    10     8     1     1
-10       G5   2     0     0     0     0     4    18    13     6     2     1
-11       G1   3     0     0     0     0     5    21    11     8     1     0
-12       G2   3     0     0     0     0     3    20    10     7     1     1
-13       G3   3     0     0     0     0     4    19    12     8     1     1
-14       G4   3     0     0     0     0     3    21    11     6     1     0
-15       G5   3     0     0     0     0     4    17    10     8     1     1
-   Day11 Day12 Day13 Day14 Total Seeds GermPercent FirstGermTime LastGermTime
-1      1     0     0     0          50    80.00000             5           11
-2      0     1     0     0          51    82.35294             4           12
-3      1     1     0     0          48    93.75000             4           12
-4      1     1     0     0          51    90.19608             5           12
-5      0     1     1     0          50    96.00000             5           13
-6      1     1     0     0          49    93.87755             5           12
-7      1     0     0     0          48    87.50000             5           11
-8      0     1     0     0          47    85.10638             4           12
-9      1     1     0     0          52    86.53846             4           12
-10     0     1     0     0          50    90.00000             5           12
-11     0     1     1     0          51    94.11765             5           13
-12     1     1     0     0          51    86.27451             5           12
-13     0     1     1     0          49    95.91837             5           13
-14     1     1     0     0          48    91.66667             5           12
-15     1     0     0     0          48    87.50000             5           11
-   PeakGermTime TimeSpreadGerm t50_Coolbear t50_Farooq MeanGermTime VarGermTime
-1             6              6     5.970588   5.941176     6.700000    1.446154
-2             6              8     6.192308   6.153846     6.857143    2.027875
-3             6              8     6.000000   5.972222     6.866667    2.572727
-4             6              7     6.041667   6.000000     6.891304    2.187923
-5             6              8     5.975000   5.950000     6.812500    2.368351
-6             6              7     5.976190   5.952381     6.869565    2.071498
-7             6              6     5.972222   5.944444     6.690476    1.389663
-8             6              8     6.208333   6.166667     6.875000    2.112179
-9             6              8     6.000000   5.973684     6.866667    2.300000
-10            6              7     6.076923   6.038462     6.822222    1.831313
-11            6              8     5.928571   5.904762     6.791667    2.381206
-12            6              7     5.975000   5.950000     6.886364    2.149577
-13            6              8     6.083333   6.041667     6.936170    2.539315
-14            6              7     5.928571   5.904762     6.772727    1.900634
-15            6              6     6.050000   6.000000     6.809524    1.670151
-   SEGermTime CVGermTime MeanGermRate  VarGermRate  SEGermRate      CVG
-1   0.1901416  0.1794868    0.1492537 0.0007176543 0.004235724 14.92537
-2   0.2197333  0.2076717    0.1458333 0.0009172090 0.004673148 14.58333
-3   0.2391061  0.2335882    0.1456311 0.0011572039 0.005071059 14.56311
-4   0.2180907  0.2146419    0.1451104 0.0009701218 0.004592342 14.51104
-5   0.2221275  0.2259002    0.1467890 0.0010995627 0.004786184 14.67890
-6   0.2122088  0.2095140    0.1455696 0.0009301809 0.004496813 14.55696
-7   0.1818989  0.1761967    0.1494662 0.0006935558 0.004063648 14.94662
-8   0.2297923  0.2113940    0.1454545 0.0009454531 0.004861721 14.54545
-9   0.2260777  0.2208604    0.1456311 0.0010345321 0.004794747 14.56311
-10  0.2017321  0.1983606    0.1465798 0.0008453940 0.004334343 14.65798
-11  0.2227295  0.2272072    0.1472393 0.0011191581 0.004828643 14.72393
-12  0.2210295  0.2129053    0.1452145 0.0009558577 0.004660905 14.52145
-13  0.2324392  0.2297410    0.1441718 0.0010970785 0.004831366 14.41718
-14  0.2078370  0.2035568    0.1476510 0.0009033254 0.004531018 14.76510
-15  0.1994129  0.1897847    0.1468531 0.0007767634 0.004300508 14.68531
-   GermRateRecip_Coolbear GermRateRecip_Farooq GermSpeed_Count
-1               0.1674877            0.1683168        6.138925
-2               0.1614907            0.1625000        6.362698
-3               0.1666667            0.1674419        6.882179
-4               0.1655172            0.1666667        6.927417
-5               0.1673640            0.1680672        7.318987
-6               0.1673307            0.1680000        6.931782
-7               0.1674419            0.1682243        6.448449
-8               0.1610738            0.1621622        6.053175
-9               0.1666667            0.1674009        6.830592
-10              0.1645570            0.1656051        6.812698
-11              0.1686747            0.1693548        7.342796
-12              0.1673640            0.1680672        6.622258
-13              0.1643836            0.1655172        7.052320
-14              0.1686747            0.1693548        6.706782
-15              0.1652893            0.1666667        6.363925
-   GermSpeed_Percent GermSpeedAccumulated_Count GermSpeedAccumulated_Percent
-1           12.27785                   34.61567                     69.23134
-2           12.47588                   35.54058                     69.68741
-3           14.33787                   38.29725                     79.78594
-4           13.58317                   38.68453                     75.85202
-5           14.63797                   41.00786                     82.01571
-6           14.14649                   38.77620                     79.13509
-7           13.43427                   36.38546                     75.80304
-8           12.87909                   33.77079                     71.85275
-9           13.13575                   38.11511                     73.29829
-10          13.62540                   38.19527                     76.39054
-11          14.39764                   41.17452                     80.73436
-12          12.98482                   37.00640                     72.56158
-13          14.39249                   39.29399                     80.19182
-14          13.97246                   37.69490                     78.53103
-15          13.25818                   35.69697                     74.36868
-   GermSpeedCorrected_Normal GermSpeedCorrected_Accumulated WeightGermPercent
-1                 0.07673656                      0.4326958          47.42857
-2                 0.07726134                      0.4315642          47.89916
-3                 0.07340991                      0.4085040          54.46429
-4                 0.07680397                      0.4288937          52.24090
-5                 0.07623944                      0.4271652          56.14286
-6                 0.07383855                      0.4130508          54.51895
-7                 0.07369656                      0.4158338          51.93452
-8                 0.07112480                      0.3968068          49.39210
-9                 0.07893128                      0.4404413          50.27473
-10                0.07569665                      0.4243919          52.57143
-11                0.07801721                      0.4374793          55.18207
-12                0.07675799                      0.4289379          50.00000
-13                0.07352419                      0.4096608          55.24781
-14                0.07316490                      0.4112171          53.86905
-15                0.07273057                      0.4079653          51.19048
-   MeanGermPercent MeanGermNumber TimsonsIndex TimsonsIndex_Labouriau
-1         5.714286       2.857143     8.000000                   1.00
-2         5.882353       3.000000     9.803922                   1.25
-3         6.696429       3.214286    14.583333                   1.40
-4         6.442577       3.285714     7.843137                   1.00
-5         6.857143       3.428571    10.000000                   1.00
-6         6.705539       3.285714     6.122449                   1.00
-7         6.250000       3.000000     8.333333                   1.00
-8         6.079027       2.857143    10.638298                   1.25
-9         6.181319       3.214286     9.615385                   1.25
-10        6.428571       3.214286     8.000000                   1.00
-11        6.722689       3.428571     9.803922                   1.00
-12        6.162465       3.142857     5.882353                   1.00
-13        6.851312       3.357143     8.163265                   1.00
-14        6.547619       3.142857     6.250000                   1.00
-15        6.250000       3.000000     8.333333                   1.00
-   TimsonsIndex_KhanUngar GermRateGeorge GermIndex GermIndex_mod
-1               0.5714286              4  5.840000      7.300000
-2               0.7002801              5  5.882353      7.142857
-3               1.0416667              7  6.687500      7.133333
-4               0.5602241              4  6.411765      7.108696
-5               0.7142857              5  6.900000      7.187500
-6               0.4373178              3  6.693878      7.130435
-7               0.5952381              4  6.395833      7.309524
-8               0.7598784              5  6.063830      7.125000
-9               0.6868132              5  6.173077      7.133333
-10              0.5714286              4  6.460000      7.177778
-11              0.7002801              5  6.784314      7.208333
-12              0.4201681              3  6.137255      7.113636
-13              0.5830904              4  6.775510      7.063830
-14              0.4464286              3  6.625000      7.227273
-15              0.5952381              4  6.291667      7.190476
-   EmergenceRateIndex_Melville EmergenceRateIndex_Melville_mod
-1                          292                        7.300000
-2                          300                        7.142857
-3                          321                        7.133333
-4                          327                        7.108696
-5                          345                        7.187500
-6                          328                        7.130435
-7                          307                        7.309524
-8                          285                        7.125000
-9                          321                        7.133333
-10                         323                        7.177778
-11                         346                        7.208333
-12                         313                        7.113636
-13                         332                        7.063830
-14                         318                        7.227273
-15                         302                        7.190476
-   EmergenceRateIndex_BilbroWanjura EmergenceRateIndex_Fakorede PeakValue
-1                          5.970149                    8.375000  9.500000
-2                          6.125000                    8.326531  9.313725
-3                          6.553398                    7.324444 10.416667
-4                          6.675079                    7.640359 10.049020
-5                          7.045872                    7.096354 11.250000
-6                          6.696203                    7.317580 10.714286
-7                          6.277580                    7.646259 10.416667
-8                          5.818182                    8.078125  9.574468
-9                          6.553398                    7.934815  9.855769
-10                         6.596091                    7.580247 10.250000
-11                         7.067485                    7.216146 11.029412
-12                         6.389439                    7.981921  9.803922
-13                         6.776074                    7.231326 10.969388
-14                         6.496644                    7.388430 10.677083
-15                         6.167832                    7.782313 10.156250
-   GermValue_Czabator GermValue_DP GermValue_Czabator_mod GermValue_DP_mod
-1            54.28571     57.93890               54.28571         39.56076
-2            54.78662     52.58713               54.78662         40.99260
-3            69.75446     68.62289               69.75446         53.42809
-4            64.74158     70.43331               64.74158         48.86825
-5            77.14286     80.16914               77.14286         56.23935
-6            71.84506     76.51983               71.84506         53.06435
-7            65.10417     69.41325               65.10417         47.37690
-8            58.20345     56.00669               58.20345         43.67948
-9            60.92165     58.13477               60.92165         45.30801
-10           65.89286     70.91875               65.89286         49.10820
-11           74.14731     77.39782               74.14731         54.27520
-12           60.41632     64.44988               60.41632         44.71582
-13           75.15470     78.16335               75.15470         54.94192
-14           69.90947     74.40140               69.90947         51.41913
-15           63.47656     67.62031               63.47656         46.48043
-      CUGerm GermSynchrony GermUncertainty
-1  0.7092199     0.2666667        2.062987
-2  0.5051546     0.2346109        2.321514
-3  0.3975265     0.2242424        2.462012
-4  0.4672113     0.2502415        2.279215
-5  0.4312184     0.2606383        2.146051
-6  0.4934701     0.2792271        2.160545
-7  0.7371500     0.2729384        2.040796
-8  0.4855842     0.2256410        2.357249
-9  0.4446640     0.2494949        2.321080
-10 0.5584666     0.2555556        2.187983
-11 0.4288905     0.2686170        2.128670
-12 0.4760266     0.2737844        2.185245
-13 0.4023679     0.2506938        2.241181
-14 0.5383760     0.2991543        2.037680
-15 0.6133519     0.2497096        2.185028
+
## No test: 
+##D data(gcdata)
+##D 
+##D counts.per.intervals <- c("Day01", "Day02", "Day03", "Day04", "Day05",
+##D                           "Day06", "Day07", "Day08", "Day09", "Day10",
+##D                           "Day11", "Day12", "Day13", "Day14")
+##D germination.indices(gcdata, total.seeds.col = "Total Seeds",
+##D                     counts.intervals.cols = counts.per.intervals,
+##D                     intervals = 1:14, partial = TRUE, max.int = 5)
+## End(No test)

FourPHFfit.bulk()

This wrapper function can be used to fit the four-parameter hill function for multiple samples in batch.

-
data(gcdata)
-
-counts.per.intervals <- c("Day01", "Day02", "Day03", "Day04", "Day05",
-                          "Day06", "Day07", "Day08", "Day09", "Day10",
-                          "Day11", "Day12", "Day13", "Day14")
-
-FourPHFfit.bulk(gcdata, total.seeds.col = "Total Seeds",
-                    counts.intervals.cols = counts.per.intervals,
-                    intervals = 1:14, partial = TRUE,
-                    fix.y0 = TRUE, fix.a = TRUE, xp = c(10, 60),
-                    tmax = 20, tries = 3, umax = 90, umin = 10)
-
    Genotype Rep Day01 Day02 Day03 Day04 Day05 Day06 Day07 Day08 Day09 Day10
- 1:       G1   1     0     0     0     0     4    17    10     7     1     0
- 2:       G2   1     0     0     0     1     3    15    13     6     2     1
- 3:       G3   1     0     0     0     2     3    18     9     8     2     1
- 4:       G4   1     0     0     0     0     4    19    12     6     2     1
- 5:       G5   1     0     0     0     0     5    20    12     8     1     0
- 6:       G1   2     0     0     0     0     3    21    11     7     1     1
- 7:       G2   2     0     0     0     0     4    18    11     7     1     0
- 8:       G3   2     0     0     0     1     3    14    12     6     2     1
- 9:       G4   2     0     0     0     1     3    19    10     8     1     1
-10:       G5   2     0     0     0     0     4    18    13     6     2     1
-11:       G1   3     0     0     0     0     5    21    11     8     1     0
-12:       G2   3     0     0     0     0     3    20    10     7     1     1
-13:       G3   3     0     0     0     0     4    19    12     8     1     1
-14:       G4   3     0     0     0     0     3    21    11     6     1     0
-15:       G5   3     0     0     0     0     4    17    10     8     1     1
-    Day11 Day12 Day13 Day14 Total Seeds        a         b        c y0 lag
- 1:     1     0     0     0          50 80.00000  9.881947 6.034954  0   0
- 2:     0     1     0     0          51 82.35294  9.227667 6.175193  0   0
- 3:     1     1     0     0          48 93.75000  7.793055 6.138110  0   0
- 4:     1     1     0     0          51 90.19608  8.925668 6.125172  0   0
- 5:     0     1     1     0          50 96.00000  9.419194 6.049641  0   0
- 6:     1     1     0     0          49 93.87755  9.450187 6.097412  0   0
- 7:     1     0     0     0          48 87.50000 10.172466 6.029851  0   0
- 8:     0     1     0     0          47 85.10638  8.940702 6.189774  0   0
- 9:     1     1     0     0          52 86.53846  8.617395 6.125121  0   0
-10:     0     1     0     0          50 90.00000  9.608849 6.109503  0   0
-11:     0     1     1     0          51 94.11765  9.400248 6.018759  0   0
-12:     1     1     0     0          51 86.27451  9.162558 6.108449  0   0
-13:     0     1     1     0          49 95.91837  8.995233 6.149011  0   0
-14:     1     1     0     0          48 91.66667 10.391898 6.015907  0   0
-15:     1     0     0     0          48 87.50000  9.136762 6.121580  0   0
-      Dlag50 t50.total t50.Germinated     TMGR      AUC      MGT Skewness
- 1: 6.034954  6.355122       6.034954 5.912195 1108.975 6.632252 1.098973
- 2: 6.175193  6.473490       6.175193 6.031282 1128.559 6.784407 1.098655
- 3: 6.138110  6.244190       6.138110 5.938179 1283.693 6.772742 1.103392
- 4: 6.125172  6.276793       6.125172 5.972686 1239.887 6.739665 1.100323
- 5: 6.049641  6.103433       6.049641 5.914289 1328.328 6.654980 1.100062
- 6: 6.097412  6.182276       6.097412 5.961877 1294.463 6.702470 1.099232
- 7: 6.029851  6.202812       6.029851 5.914057 1213.908 6.622417 1.098272
- 8: 6.189774  6.439510       6.189774 6.036193 1164.346 6.804000 1.099232
- 9: 6.125121  6.352172       6.125121 5.961631 1188.793 6.745241 1.101242
-10: 6.109503  6.253042       6.109503 5.978115 1240.227 6.711899 1.098600
-11: 6.018759  6.099434       6.018759 5.883558 1305.200 6.624247 1.100600
-12: 6.108449  6.326181       6.108449 5.964079 1188.021 6.718636 1.099892
-13: 6.149011  6.207500       6.149011 5.998270 1316.407 6.762272 1.099733
-14: 6.015907  6.122385       6.015907 5.905179 1273.386 6.604963 1.097916
-15: 6.121580  6.317392       6.121580 5.976088 1203.664 6.732267 1.099760
-                                                             msg isConv
- 1: #1. Relative error in the sum of squares is at most `ftol'.    TRUE
- 2: #1. Relative error in the sum of squares is at most `ftol'.    TRUE
- 3: #1. Relative error in the sum of squares is at most `ftol'.    TRUE
- 4: #1. Relative error in the sum of squares is at most `ftol'.    TRUE
- 5: #1. Relative error in the sum of squares is at most `ftol'.    TRUE
- 6: #1. Relative error in the sum of squares is at most `ftol'.    TRUE
- 7: #1. Relative error in the sum of squares is at most `ftol'.    TRUE
- 8: #1. Relative error in the sum of squares is at most `ftol'.    TRUE
- 9: #1. Relative error in the sum of squares is at most `ftol'.    TRUE
-10: #1. Relative error in the sum of squares is at most `ftol'.    TRUE
-11: #1. Relative error in the sum of squares is at most `ftol'.    TRUE
-12: #1. Relative error in the sum of squares is at most `ftol'.    TRUE
-13: #1. Relative error in the sum of squares is at most `ftol'.    TRUE
-14: #1. Relative error in the sum of squares is at most `ftol'.    TRUE
-15: #1. Relative error in the sum of squares is at most `ftol'.    TRUE
-    txp.total_10 txp.total_60 Uniformity_90 Uniformity_10 Uniformity
- 1:     4.956266     6.744598      7.537688      4.831809   2.705880
- 2:     4.983236     6.872603      7.835407      4.866755   2.968652
- 3:     4.673022     6.608437      8.137340      4.630062   3.507277
- 4:     4.850876     6.614967      7.834806      4.788598   3.046208
- 5:     4.814126     6.386788      7.639025      4.790947   2.848078
- 6:     4.868635     6.477594      7.693458      4.832474   2.860984
- 7:     4.930423     6.510495      7.483642      4.858477   2.625165
- 8:     4.940058     6.823299      7.914162      4.841106   3.073056
- 9:     4.836659     6.733275      7.904040      4.746574   3.157466
-10:     4.920629     6.566505      7.679176      4.860681   2.818494
-11:     4.798630     6.391288      7.603603      4.764249   2.839354
-12:     4.893597     6.684521      7.763844      4.806015   2.957830
-13:     4.841310     6.509952      7.850339      4.816395   3.033943
-14:     4.915143     6.397486      7.432360      4.869401   2.562960
-15:     4.892505     6.667247      7.785804      4.813086   2.972718
+
## No test: 
+##D data(gcdata)
+##D 
+##D counts.per.intervals <- c("Day01", "Day02", "Day03", "Day04", "Day05",
+##D                           "Day06", "Day07", "Day08", "Day09", "Day10",
+##D                           "Day11", "Day12", "Day13", "Day14")
+##D 
+##D FourPHFfit.bulk(gcdata, total.seeds.col = "Total Seeds",
+##D                     counts.intervals.cols = counts.per.intervals,
+##D                     intervals = 1:14, partial = TRUE,
+##D                     fix.y0 = TRUE, fix.a = TRUE, xp = c(10, 60),
+##D                     tmax = 20, tries = 3, umax = 90, umin = 10)
+## End(No test)

@@ -1781,19 +2055,22 @@

Session Info

- -
R version 4.0.0 (2020-04-24)
-Platform: x86_64-w64-mingw32/x64 (64-bit)
-Running under: Windows 10 x64 (build 17763)
+
+
R version 4.0.1 (2020-06-06)
+Platform: x86_64-pc-linux-gnu (64-bit)
+Running under: Ubuntu 18.04.4 LTS
 
 Matrix products: default
+BLAS:   /usr/lib/x86_64-linux-gnu/atlas/libblas.so.3.10.3
+LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3
 
 locale:
-[1] LC_COLLATE=English_United States.1252 
-[2] LC_CTYPE=English_United States.1252   
-[3] LC_MONETARY=English_United States.1252
-[4] LC_NUMERIC=C                          
-[5] LC_TIME=English_United States.1252    
+ [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
+ [3] LC_TIME=en_IN.UTF-8        LC_COLLATE=en_US.UTF-8    
+ [5] LC_MONETARY=en_IN.UTF-8    LC_MESSAGES=en_US.UTF-8   
+ [7] LC_PAPER=en_IN.UTF-8       LC_NAME=C                 
+ [9] LC_ADDRESS=C               LC_TELEPHONE=C            
+[11] LC_MEASUREMENT=en_IN.UTF-8 LC_IDENTIFICATION=C       
 
 attached base packages:
 [1] stats     graphics  grDevices utils     datasets  methods   base     
@@ -1803,29 +2080,227 @@ 

loaded via a namespace (and not attached): [1] minpack.lm_1.2-1 tidyselect_1.1.0 xfun_0.14 pander_0.6.3 - [5] purrr_0.3.4 lattice_0.20-41 colorspace_1.4-1 vctrs_0.3.0 + [5] purrr_0.3.4 lattice_0.20-41 colorspace_1.4-1 vctrs_0.3.1 [9] generics_0.0.2 htmltools_0.4.0 yaml_2.2.1 XML_3.99-0.3 [13] rlang_0.4.6 pkgdown_1.5.1 pillar_1.4.4 glue_1.4.1 [17] lifecycle_0.2.0 plyr_1.8.6 stringr_1.4.0 munsell_0.5.0 -[21] gtable_0.3.0 memoise_1.1.0 evaluate_0.14 labeling_0.3 -[25] knitr_1.28 gbRd_0.4-11 curl_4.3 highr_0.8 -[29] broom_0.5.6 Rcpp_1.0.4.6 scales_1.1.1 backports_1.1.6 -[33] desc_1.2.0 farver_2.0.3 fs_1.4.1 ggplot2_3.3.0 -[37] digest_0.6.25 stringi_1.4.6 dplyr_1.0.0 ggrepel_0.8.2 -[41] grid_4.0.0 rprojroot_1.3-2 bibtex_0.4.2.2 mathjaxr_1.0-0 -[45] Rdpack_0.11-2 tools_4.0.0 bitops_1.0-6 magrittr_1.5 -[49] RCurl_1.98-1.2 tibble_3.0.1 crayon_1.3.4 tidyr_1.1.0 -[53] pkgconfig_2.0.3 MASS_7.3-51.6 ellipsis_0.3.1 data.table_1.12.8 -[57] assertthat_0.2.1 rmarkdown_2.1 httr_1.4.1 rstudioapi_0.11 -[61] R6_2.4.1 nlme_3.1-147 compiler_4.0.0

+[21] gtable_0.3.0 memoise_1.1.0 evaluate_0.14 knitr_1.28 +[25] gbRd_0.4-11 curl_4.3 highr_0.8 broom_0.5.6 +[29] Rcpp_1.0.4.6 scales_1.1.1 backports_1.1.7 desc_1.2.0 +[33] fs_1.4.1 ggplot2_3.3.1 digest_0.6.25 stringi_1.4.6 +[37] dplyr_1.0.0 ggrepel_0.8.2 grid_4.0.1 rprojroot_1.3-2 +[41] bibtex_0.4.2.2 mathjaxr_0.8-3 Rdpack_0.11-1 tools_4.0.1 +[45] bitops_1.0-6 magrittr_1.5 RCurl_1.98-1.2 tibble_3.0.1 +[49] crayon_1.3.4 tidyr_1.1.0 pkgconfig_2.0.3 MASS_7.3-51.6 +[53] ellipsis_0.3.1 data.table_1.12.8 assertthat_0.2.1 rmarkdown_2.2 +[57] httr_1.4.1 rstudioapi_0.11 R6_2.4.1 nlme_3.1-147 +[61] compiler_4.0.1

References

+
+

Allan, R. E., Vogel, O. A., and Peterson, C. J. (1962). Seedling emergence rate of fall-sown wheat and its association with plant height and coleoptile length. Agronomy Journal 54, 347. doi:10/cm7jct.

+
+
+

Al-Mudaris, M. A. (1998). Notes on various parameters recording the speed of seed germination. Der Tropenlandwirt-Journal of Agriculture in the Tropics and Subtropics 99, 147–154.

+
+
+

AOSA (1983). Seed Vigor Testing Handbook. Ithaca, NY, USA: Association of Official Seed Analysts.

+
+
+

Baskin, C. C., and Baskin, J. M. (1998). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. San Diego: Academic Press.

+
+
+

Bewley, J. D., and Black, M. (1994). Seeds: Physiology of Development and Germination. New York, USA: Plenum Publishing Corporation Available at: https://www.cabdirect.org/cabdirect/abstract/19950315483.

+
+
+

Bilbro, J. D., and Wanjura, D. F. (1982). Soil crusts and cotton emergence relationships. Transactions of the ASAE 25, 1484–1487. doi:10/ggjc3x.

+
+
+

Bonner, F. T. (1967). Ideal sowing depth for sweetgum seed. Tree Planters’ Notes 18, 1–1. Available at: https://www.fs.usda.gov/treesearch/pubs/download/42583.pdf.

+
+
+

Bouton, J. H., Dudeck, A. E., and Smith, R. L. (1976). Germination in freshly harvested seed of centipedegrass. Agronomy Journal 68, 991. doi:10/cskpqh.

+
+
+

Bradbeer, J. W. (1988). Seed Dormancy and Germination. Glasgow; London: Blackie Available at: www.springer.com/in/book/9780216916364 [Accessed January 15, 2018].

+
+
+

Brown, R. F., and Mayer, D. G. (1988). Representing cumulative germination. 1. A critical analysis of single-value germination indices. Annals of Botany 61, 117–125. doi:10.1093/oxfordjournals.aob.a087534.

+
+
+

Chaudhary, T. N., and Ghildyal, B. P. (1970). Effect of temperature associated with levels of bulk density on rice seedling emergence. Plant and Soil 33, 87–90. doi:10/bzdwmt.

+
+
+

Coolbear, P., Francis, A., and Grierson, D. (1984). The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. Journal of Experimental Botany 35, 1609–1617. doi:10.1093/jxb/35.11.1609.

+
+
+

Czabator, F. J. (1962). Germination value: An index combining speed and completeness of pine seed germination. Forest Science 8, 386–396. doi:10.1093/forestscience/8.4.386.

+
+
+

Djavanshir, K., and Pourbeik, H. (1976). Germination value-A new formula. Silvae genetica 25, 79–83.

+
+
+

Edmond, J. B., and Drapala, W. J. (1958). The effects of temperature, sand and soil, and acetone on germination of okra seed. Proceedings of the American Society for Horticultural Science 71, 428–434.

+
+
+

Edwards, T. I. (1932). Temperature relations of seed germination. The Quarterly Review of Biology 7, 428–443.

+

El-Kassaby, Y. A., Moss, I., Kolotelo, D., and Stoehr, M. (2008). Seed germination: Mathematical representation and parameters extraction. Forest Science 54, 220–227. doi:10.1093/forestscience/54.2.220.

+
+

Ellis, R. H., and Roberts, E. H. (1980). Improved equations for the prediction of seed longevity. Annals of Botany 45, 13–30. doi:10.1093/oxfordjournals.aob.a085797.

+
+
+

Erbach, D. C. (1982). Tillage for continuous corn and corn-soybean rotation. Transactions of the ASAE 25, 906–0911. doi:10/ggjc4g.

+
+
+

Evetts, L. L., and Burnside, O. C. (1972). Germination and seedling development of common milkweed and other species. Weed Science 20, 371–378. doi:10.1017/S004317450003589x.

+
+
+

Fakorede, M. A. B., and Agbana, S. B. (1983). Heterotic effects and association of seedling vigour with mature characteristics and grain yield in some tropical maize cultivars. Maydica 28, 327–338.

+
+
+

Fakorede, M. A. B., and Ayoola, A. O. (1980). Relation between seedling vigor and selection for yield improvement in maize. Maydica 25, 135–147.

+
+
+

Fakorede, M. A. B., and Ojo, D. K. (1981). Variability for seedling vigour in maize. Experimental Agriculture 17, 195–201. doi:10/cxr9cn.

+
+
+

Farooq, M., Basra, S. M. A., Ahmad, N., and Hafeez, K. (2005). Thermal hardening: A new seed vigor enhancement tool in rice. Journal of Integrative Plant Biology 47, 187–193. doi:10.1111/J.1744-7909.2005.00031.x.

+
+
+

George, D. W. (1961). Influence of germination temperature on the expression of post-harvest dormancy in wheat. Crop Science Abstracts; Western Society of Crop Science Annual Meeting, 1961, 15.

+
+
+

Goloff, A. A., and Bazzaz, F. A. (1975). A germination model for natural seed populations. Journal of Theoretical Biology 52, 259–283. doi:10.1016/0022-5193(75)90001-6.

+
+
+

Gomes, F. P. (1960). Curso De Estatística Experimental. Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo Available at: https://books.google.de/books?id=ZckqGwAACAAJ.

+
+
+

Goodchild, N. A., and Walker, M. G. (1971). A method of measuring seed germination in physiological studies. Annals of Botany 35, 615–621. Available at: https://www.jstor.org/stable/42908843 [Accessed January 15, 2018].

+
+
+

Gordon, A. G. (1969). Some observations on the germination energy tests for cereals. Proceedings of the Association of Official Seed Analysts 59, 58–72. Available at: https://www.jstor.org/stable/23432357 [Accessed December 11, 2018].

+
+
+

Gordon, A. G. (1971). The germination resistance test - A new test for measuring germination quality of cereals. Canadian Journal of Plant Science 51, 181–183. doi:10/fh6586.

+
+
+

Grose, R. J., and Zimmer, W. J. (1958). Some laboratory germination responses of the seeds of river red gum, Eucalyptus camaldulensis Dehn. Syn. Eucalyptus rostrata Schlecht. Australian Journal of Botany 6, 129. doi:10/bkp42t.

+
+
+

Haugland, E., and Brandsaeter, L. O. (1996). Experiments on bioassay sensitivity in the study of allelopathy. Journal of Chemical Ecology 22, 1845–1859.

+
+
+

Heydecker, W. (1972). Seed Ecology. Proceedings of the Nineteenth Easter School in Agricultural Science, University of Nottingham, 1972. University Park, USA: Pennsylvania State University Press.

+
+
+

Hsu, F. H., and Nelson, C. J. (1986). Planting date effects on seedling development of perennial warm-season forage grasses. I. Field emergence. Agronomy Journal 78, 33–38. doi:10/bh39mm.

+
+
+

ISTA (2015). Chapter 5: The germination test. International Rules for Seed Testing. International Seed Testing Association, Zurich, Switzerland. 2015, i–5–56. Available at: https://doi.org/10.15258/istarules.2015.05.

+
+
+

Kader, M. A. (2005). A comparison of seed germination calculation formulae and the associated interpretation of resulting data. Journal and Proceedings of the Royal Society of New South Wales 138, 65–75.

+
+
+

Kendrick, R. E., and Frankland, B. (1969). Photocontrol of germination in Amaranthus caudatus. Planta 85, 326–339. doi:10.1007/bf00381281.

+
+
+

Khamassi, K., Harbaoui, K., Jaime, A. T. da S., and Jeddi, F. B. (2013). Optimal germination temperature assessed by indices and models in field bean (Vicia faba L. Var. Minor). Agriculturae Conspectus Scientificus 78, 131–136. Available at: https://hrcak.srce.hr/104663.

+
+
+

Khan, M. A., and Ungar, I. A. (1984). The effect of salinity and temperature on the germination of polymorphic seeds and growth of Atriplex triangularis Willd. American Journal of Botany 71, 481–489. doi:10.2307/2443323.

+
+
+

Khandakar, A. L., and Bradbeer, J. W. (1983). Jute seed quality. Bangladesh Agricultural Research Council, Dhaka.

+
+
+

Kotowski, F. (1926). Temperature relations to germination of vegetable seeds. Proceedings of the American Society for Horticultural Science 23, 176–184.

+
+
+

Labouriau, L. G. (1983a). A Germinação Das Sementes. Organização dos Estados Americanos. Programa Regional de Desenvolvimento Científico e Tecnológico. Série de Biologia. Monografia 24.

+
+
+

Labouriau, L. G. (1983b). Uma nova linha de pesquisa na fisiologia da germinação das sementes. Anais do XXXIV Congresso Nacional de Botânica. SBB, Porto Alegre, 11–50.

+
+
+

Labouriau, L. G., and Valadares, M. E. B. (1976). On the germination of seeds of Calotropis procera (Ait.) Ait. F. Anais da Academia Brasileira de Ciências 48.

+
+
+

Lyon, J. L., and Coffelt, R. J. (1966). Rapid method for determining numerical indexes for time-course curves. Nature 211, 330–330. doi:10/b46knw.

+
+
+

Maguire, J. D. (1962). Speed of germination - Aid in selection and evaluation for seedling emergence and vigor. Crop Science 2, 176–177. doi:10.2135/cropsci1962.0011183x000200020033x.

+
+
+

Melville, A. H., Galletta, G. J., Draper, A. D., and Ng, T. J. (1980). Seed germination and early seedling vigor in progenies of inbred strawberry selections. HortScience 15, 749–750.

+
+
+

Mock, J. J., and Eberhart, S. A. (1972). Cold tolerance in adapted maize populations. Crop Science 12, 466–469. doi:10/cvtgtd.

+
+
+

Negm, F. B., and Smith, O. E. (1978). Effects of Ethylene and Carbon Dioxide on the Germination of Osmotically Inhibited Lettuce Seed. Plant Physiology 62, 473–476. doi:10/bd98fn.

+
+
+

Nichols, M. A., and Heydecker, W. (1968). Two approaches to the study of germination data. Proceedings of the International Seed Testing Association 33, 531–540.

+
+
+

Primack, R. B. (1985). Longevity of individual flowers. Annual Review of Ecology and Systematics 16, 15–37. doi:10.1146/annurev.es.16.110185.000311.

+
+
+

Quintanilla, L. G., Pajarón, S., Pangua, E., and Amigo, J. (2000). Effect of temperature on germination in northernmost populations of Culcita macrocarpa and Woodwardia radicans. Plant Biology 2, 612–617. doi:10.1055/s-2000-16638.

+
+
+

Ranal, M. A. (1999). Effects of temperature on spore germination in some fern species from semideciduous mesophytic forest. American Fern Journal 89, 149. doi:10.2307/1547349.

+
+
+

Ranal, M. A., and Santana, D. G. de (2006). How and why to measure the germination process? Brazilian Journal of Botany 29, 1–11. doi:10.1590/s0100-84042006000100002.

+
+
+

Reddy, L. V. (1978). Effect of temperature on seed dormancy and alpha-amylase activity during kernel maturation and germination in wheat (Triticum aestivum L.) Cultivars. Available at: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/1j92gb854.

+
+
+

Reddy, L. V., Metzger, R. J., and Ching, T. M. (1985). Effect of temperature on seed dormancy of wheat. Crop Science 25, 455. doi:10.2135/cropsci1985.0011183X002500030007x.

+
+
+

Santana, D. G. de, and Ranal, M. A. (2004). Análise Da Germinação: Um Enfoque Estatístico. Brasília: Universidade de Brasília.

+
+
+

Schrader, J. A., and Graves, W. R. (2000). Seed germination and seedling growth of Alnus maritima from its three disjunct populations. Journal of the American Society for Horticultural Science 125, 128–134. Available at: http://journal.ashspublications.org/content/125/1/128 [Accessed December 12, 2018].

+
+
+

Scott, S. J., Jones, R. A., and Williams, W. A. (1984). Review of data analysis methods for seed germination. Crop Science 24, 1192–1199. doi:10.2135/cropsci1984.0011183x002400060043x.

+
+
+

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal 27, 379–423. doi:10.1002/j.1538-7305.1948.tb01338.x.

+
+
+

Shmueli, M., and Goldberg, D. (1971). Emergence, early growth, and salinity of five vegetable crops germinated by sprinkle and trickle irrigation in an arid zone. HortScience 6, 563–565.

+
+
+

Smith, P. G., and Millet, A. H. (1964). Germinating and sprouting responses of the tomato at low temperatures. Journal of the American Society for Horticultural Science 84, 480–484.

+
+
+

Throneberry, G. O., and Smith, F. G. (1955). Relation of respiratory and enzymatic activity to corn seed viability. Plant Physiology 30, 337–343.

+
+
+

Timson, J. (1965). New Method of Recording Germination Data. Nature 207, 216. doi:10.1038/207216a0.

+
+
+

Tucker, H., and Wright, L. N. (1965). Estimating rapidity of germination. Crop Science 5, 398–399. doi:10.2135/cropsci1965.0011183X000500050006x.

+
+
+

Wardle, D. A., Ahmed, M., and Nicholson, K. S. (1991). Allelopathic influence of nodding thistle (Carduus nutans L.) Seeds on germination and radicle growth of pasture plants. New Zealand Journal of Agricultural Research 34, 185–191. doi:10.1080/00288233.1991.10423358.

+
+
+

Went, F. W. (1957). The experimental control of plant growth. Chronica Botanica Co., Waltham, Mass., USA; The Ronald Press Co., New York.

+

diff --git a/docs/articles/Introduction_files/figure-html/unnamed-chunk-9-1.png b/docs/articles/Introduction_files/figure-html/unnamed-chunk-9-1.png index 6508d49f3ab457ce94af0d504cfe8db0b90e1707..3c0ea3c41cfcc6b4648ebad65f58c1593c52def4 100644 GIT binary patch literal 13776 zcmeHuXH=BUvnK|EL^BEusO03RB*`EuNhD_(L~>T*kX3>R0!k2(Bsqh`0VbdzARr)N z$P5laWMG&f3`1t0;eGY}-+On@*$=yW_w3#eaCo|_tE;QKtA170ywtg`%0$mbPenz= zq^@>bkBW*KN=0?ditZTD;xxhS0(?;E+%vcXd>%P+eQ*zr%#_bbLQ;Xv**s8JAeK>D=X`T z3l}b4yvWAJ#?H>p!NCCnfjBuixwyD4UAlDn^5rX6u5fd6^YHNS^78WW@$vKX3kV1Z z3JMAd2?+}ei-?Gbii%#ndKC-?U%Phg`t|EKZrl(P6B8E~mynQief`WpgqN0+LlCrY$ty{NLR8(%?zJ2G;ox6AMs;a80si~=}t7~Xz zXliQSyLV4ZOY8pq``X&tIyySKy1IILdiwhM1_lO(hK5E)M#jd*CMG7Prlw|QX6EMR z4<0FMR=kEZK{rvp={rv+10s;dAgMxyB zgM&jtLY_W-`s~@W=g*&qhK7cPg@uQQM?^%tc<~}KGV^qprEj@u&Ai0xVX5aq@=X8w5+VGyu7@kqT=Jn zkCl~`RaI5h)zvjMHMO<1b#-+x7_7d&zM-L^v9S>jha(UOBoc{2p_-bSK7IQ1`Sa)I z=H`}`mM>qvw6?akwY9akw}1WmwWFh>v$M0StLxjhZ{6M9Jv}|Wy}jSRfA8z->+kO$ z7#J8F97LnhLqkKu!^0yZBcr3EV`F3E^Yg!c{aRR9z~OLMGxDk{(m%FmIwxfNR~ zs!LSrx0MZ`Y4}OMG=21B`wGG3+S4VvDuEv#>dkLoq-HJ6&aST+%5yTjeX7<_=d4C_ zwxM#FMp5mu;pgbyxT-*xz$8f|RjHGI9Xd&Q3G zQepL#^O*2qW+%)2dq{8Wm+)tV`_LnstYySt=&k849)3}Vn@6zJKP+>bcbs1IkJX6^ z$oV)}WmfT{(x>Ppk5Rf3o8iT&2G>^bomg7^ZFS@j&HLxXqeQR<7O5;_ZM}Q0^-P}m zQ7vT(-#p^RaBONqIa_J7lKx2u)&3np1jtKw)o@@?@cY>?)~6x5^zNu~4HWKjEuA>^ zU+l-tRpKky%AQk3e6T9>`&FvKtbor*VlLR7ts`)GZAMPHl! z-->vug7K7?E7?ixeHYYI?B&LpN9^e`+Mlh5(N~}fa;hv@C{nTMtbC1sx3`g(Oi(o2 z#=!39Kk)wGaX(eLI=H23zw3V2Cs;=_({>E zJtZDxvVQ_`LyLWtGPgtieAr2gCN(9s`xXrhGv~``hYDxDV$Ce#=J-}`D-}~A2dRF+ zhYpH!2$!n!GDyZP`EWMy{MtJK{{HytU?J`^Px_CCos;LtB4oO~s(rEYua0#!PDF2h z>VVoCc~d2Xx5b~GObQGsVyn-uC)j=K{m~lG%pjfyT6ZJ;SWDa8 z4(V!sG*e@bfXPenSMRPm`h3==I<0+ zkSfUbHWHSNW#jn^)Dj^L(;uOUJ|zd9zf6|QNZX~;k0+1F^nQL-$t_X3I{2d%wEl3? zH&PF(A0i+0L68o7Wf5&5yx&P?-f*#IUnb~WpZk23&2*Y<%7)Bef7p`CF}YyVdELp+ zcT~7NGb8)Fd;Pm714^X8tR;ti6fR*%Rd~>Lbc5}|{__ojEN;hJ5gTIwU84iPFE{P3 z-LW`;koxv^gogV8@Mw4i}9?nZ%tsML$FSfQnh5OKg#izBUUQqe@~gI~@sakz7jevWjv`{uxVn>~zYDda z(x~m>T5yv_Y!>^TK7F?(Dt2H}j!>O$Va`40h@yf7`{2rv)X=WXlOW=wNto7veo&{~ zH<{MYC6#lM+HS^@w$V>MqpF{PR0OeAiTW5yB#)Axiv_Tp>Q7TLt*w&U70sgwx4IDEyRnKM!87{wlWQAQ4$3;^vja z5rjO}e+o%#dlWJWk!}*Wf^fK1J_w$^>st@iA9=PyAjG8OrnRipjL){Pn+HdFoyFcc zb3^mk^j+0OUsC3(M{9a?LuDvOdS8^+?Hhd7>flzWLeuIL9O z2eBzlE%aPzSjh)z*ni_(`VsS(4seh?7RB5psAKb_2|LmOO&Wc4CSq}AJLH)SB73-C zO2XN15*BJ6#`@S*Kee=8F7^jWpNAXq)EVs16n4teHHHW15?zt)Xfoh;msM6f1^HA< zD=z0&V}?iIk6*q6Ju>_g_oKc~4nOD0Pbb*SP+uph$iKXJx(&y_U-$g+6~t3d`!C3^ z@Lb!WR8H7)9ZCaN?O@Eg7hUB36bSkGHJ~Lx+h!rRpAaxXR5HfTtqY&)698QBk=@GL z!Nre9MDw_fw=oROF90WF)tZ;CsYs3e)D8+fCCdf^O#Q2}=>6*i&8bwSo2MXD*X}}( ze7b<8rm_xWrF!*W4S+tL=`AXltj7@KKXhC|D7h>i3$4mqI!2hB4&ZlSqXQFHg7wx= z@Hx$$z}Wz>!)f5&BI4l158Jj)Tw1K*4gsAE$8;G9opI+84bVGxeR&auR?ZVXP8zxfn}h&XDSo<<$mO@l$>Dgctk*pVhmL z-dBR^wq*Gi`V(`RiLf)`7vInmNd1BU#}=of(@x!NMbqVXPgJv*OXRaW2+f zrRe>Q=lNGOuoh@7p?8};bHq@=y68-zcurJC3r5bD*|wkaIN zuK_y_0K_Y%dQdVC!T|~Zz7Tx9^g{7xp+h%T#U$N59qcllM`HpwAlYBpvnBaO`V_gf`p{F2E zU6sBgGKg%1bKDRL@$4uQfK5T=r428KMVxX@J{L?&1NNHjh|yV+0`e9nm3CNKFr!^SjM$VMJwK zPNRW6Z0#$rGC`YylPigDcXjH2yivEl3%O?3|7z=w_k>qhJlh5jf(jA+0DA1Es^IZ} z0(PqU;dd=NsS2|E&gCsZ1bU?e)=6S;rHl2Xlt!B~f@(L~1Uig@?tlo158Tp5lsjdo zM?aAHDIG@8kkR7xdl;_vIu7HNDEyrxy>Nj0ZnOc^z5FZQm8>C3yJTsGEeQqi=pl3u z#+b4BugxAqS1KjDM72icyB4I`QnUvQ(u1}q$qkD(j0AqH3E7eu$jkf_1%R@VQJP>v zaiPM3;nc-8D zK)A0j6Bs@*SU#BpP-j{E2_-UepSz!_80}Y8`NIGLj?oHi`69|YOgUqRLC9WqOik|> z)1;O%Lb|9enErQE!5+|* zbY@Q)aZ4T`nE!;fQUSp6K%^PI+GdgXp_j>01|n`j5s!%rL+3HLldeh#JWLPo}sV+#AA8TJk9x~v-jLM@|+7FD^ z?z&rysmt5TLZq4g>VecEQE&O{7WrXokEbtE!n9*Ad?$*>+|EarvCTv0#3|fYXy~b~ z{p3a5iA}!81<+)wLwhX}uI(CU&F~JW0@}7e4Z*Jmk{))&bnhYAC}+U_48+!=E^8WU z74njJ)S>fU^UlKnM_5(0UlUSN8@FHcd*oVI?YXH0kBWUs$&jgd{-&Iv-1_iSzKW3}%aq0wg!~f#8ST|rd5rRyb;b;JDCNY9ogkFJ)wf`YDBaBg z>%66|VOhwHAc}VQu-$LzSq(X+#?6EtBW$)Q`{ROX7z*qhD*jy60-a}j%Gb?&Oqu!&83ayIpsYfH4n*}z;xV*oWJnaYr6|crxe7GQ?u*VtLq2ec;Tj)= z2jC;94%luYLI)i??Tg$vw!Oz7#dA*$w{;3()4ft644<(z(v4XQ|^Ib?J& zH?}I~k%u^vtgz9u8dEvaHb;>2S$HZZNPf`;sz^Ogks-92P2u9O@|;<1@lA&iG=HqI z))~q+b}ZN|a>-T{6fb#Uaxe;|&wz{8yCjEU;erQENYB55?^UvZDp=_NS}ykwRR7lF zzte?AzwJ&xH!s}ooF79O$%p7A={_fORHR5!W=$ZXGLuIv%DfPEW0VEnYYvF=+7yjb zfONMMh$jN+Hj3`A0;lZFJ<9b<34{6d(6mR}L{XUWAkt-JA>07Splk#vUmFCD2hb0N zZO_nFENjPE$_l#u5XrydD?s1`0O@^FOeLP@%94D+q}UYodpFKt`qbS&{NBEM&9cCq zq7q68^ZhV}K{?->MHZ)!^%|kgxfXFwyeGzK; ze=TXpmb@n^1L0Mn$SFC$f|^7UO3|^y9TcTycE6ZqTm%;d6$l;9;>s9h$>zKI-E(<= zf~@fLUP_qM*4`PwkCBMIdtC?TYcIe$$VN}Uy$d6MwK*ISgSyy_w%+|V>dTc`7K#Y6 zkkA3&wInPL{tH-mLng~v=@m(R`T`X=svHAf&gDD(; z@FCNf6HF+F2Q5>7HK=Lc!Jc?oaW1n)1TcQ*7-kl^*XU?7{52o(d9kuz!gYf0?6Rl1$_D-PZLs>}gKGaYw z8Xf~2Ii_&2ggkTCe&Mpa?2#Mub6!;|DcymgUU!>ifBc3HcP;E&Gf}c;uz>LsuccYA z-QDT0N5AdW&iu?Rp((irHV|enA=FX0T&77bOSIw|BMCzE$*OmpF`Ne>gZn+1h>K%~5 zyWA9~#Z4%CE3?;Cm80m}FPPRAt+sj+1Fx~R6YKpC8KxMN{di&b=m6*YnkKJZ|Ebg? zH>NKmV8V(mMeUlMY~oh9^-)jG6d%%SM7-6fGdy(e+(g1mmv-EOxTuKb9PRPh%LrBK zKnuy9S;QByfz?CI;d)j9fp52u3-J#nxKgFuU?B`G=30wo1TGX_MUUd;Jk-DMoB?i> zX$U9bGe|RPE7|{^WzD~Ukc+z?)PZ9@KO@>=F9WHRtiE5Ag^ayn#zEy|eHwHBNh6nM z+zhodX^+iP+910Ljib_uRtplbdC3Is_2*v>_1H%~RK~;ha4gzs^mh5%`M0Fg&Y;|gSMkBL)c|$!yOi`F567+%ypf#x^OW<jwUUz$PycqjHR^ zy&$7N7WAY%A68y_+x3aaM%H?QiHk}=deZ2(EjE2WXrssZWXNfXn5Qv&-VO_`>HWL$ z(bdO-wat?75_PMO9mUd(`~l_Nj#CFPZD)UUbyw3Rypwl_%g<*|GRr-~*U3O|bn*@# z)-~s49xL@68h-T$IoD8HwZYwpGXzLP7y(3#byV>n;U*T!r?ra0p zYbdUwWxePh%RMSHwQ?op5C=%dkxyI1uc#`^99s1=m}&08pC7UF#!r5`^JZC@1*WtA z_<(|F;!!2u1R}G+_&95sg>m;v{K8+J%3ZeG!dSe-HA5 z!XW&h#lPqL%kuE<{a)DG%3G`$sNw<@#VZ0Ar*$FtoBZF$CoV4h_+QXsG#pmH)RcJ> zB6^A9&2xxuDLxbBdCBIrU13^(Qv)dD03?9d@&9P3*OV7)%m`%0DMz4nN3+4URhY9O z)GKo4+_Arr9e4ky10#+KMHT<%KPo0%tKF+|`sk>dj{Bn_SVd1PyG1VY_tFxGKb;>< z{4%Tk2RMwI7PQ9%7xw&KusW2*IF89MG)C56uIvyw0nSjPz>q0I6ZTtOeAvlB)v*I| zs%C7RoNwfyclvKwver{e)==D+D{(%6Nb@Fdfn_1rsSX$2>ty1ghHn2r4r*C>u6zh^ zgJed#SPA1-OVB;`Jrg)6Qi*aFHs$`eCu9C?Rsx6)&7iCh*+OJz&DFH}YsASDfEYm9 zl0{qRdBR(2N|AyH{vRQS!x-+rlU_KC7crO8E3fZIO~33H{S$}oIJbAJ8#5VMQBnrL zJZCY?jRIT6j<~bG<4Gw?V_r+rYqLKgBEIZ$hjEON@}Cjd&iAR%?rcdm3Ig~m28GnE z^0y-mp(J@w(w_ex$`Po#X(->lbcKK(?tya7c;g#sCtVIP_P?*g5W!~H7*P;9PX?Z@ zdi8{V2!(NExYT)JGve3W>)hZAVvcRQ*)ne1-BSl|U08u`_}6f$r}|0F`#|;MLx=M> zY|#2wHnT;wDfrRvvl2gv`JX5u{(mSy1HrhW=0D}M;sK9yEt4DK%4fS<%=pT}gf z1Xn8f9;Ok@po>7HMg(lhe^N>Op&-XF71e1c%3FZ{l_Ic>txCsrn=S{OQF?b0B3`P< zYNy^Q6xc?-`;>SI;h@GI!c(h&TfaQ6t~mB9KupO5Ao`GwHPe~p~*D4iK zD7wUX-MkX6lIqS}G5~n=6!~9qTTcxB@w>m8q%-l$D*X?=v$%|#_+4WF6Q2|cV`ZB6 z_O`H;FqzU?lUt^yJJlQ=q5q(;(lE4=O=sx|SSgYsZHVLm(_F16>T=1bqCA0yjsc)r zSBhm0T#X)K)#fNnqYZRFY^9Nar*?X0;sb=09DsqPqyZXVz4p%oL&HJ(ABq5@`Jes* zBKra+iAxmfxf1ni`Mn!-c*@TPw!5rC7*FdH5)^IPc#1b)S8%R_U$kBesZw2(42TVG zpM2FCB9mhrJb$EV^V?)1l~d%uvr_|%1k1+ciY&|l9pbiAt5j|2yVdUpH{W|qj+)Mi z*=06;?n~5UE*_cnfyurKl_I%0v~@&>BrX*Lj~B04C9JGWYpQcVlM7cm3M9TFLKc7s6l;iZK;zulj!| zG33@|8xC0t#YwFXqnYyq@1`r1%k6(m&+xo9XDH*KKes|aZ)no$A64W1cQyVu_o0^k zvFMW01s>Wacq4@0m}S4{zBx{Du5a6r^n)*5=is6g484o%y9U&c0S1B^SbPO2q4&lG z%7cL1Gnkb|AvbZ2gkxo|`<3L+NR6pf3KDNtV`%YmZs(qfS|p&@~QXlk!-x-_P3q!s6TCUORci zmAr_k?`y}I5-uLeJr87&`Q^@uuDv!J4Bp`q3U9$Z_<39&1k`rL#73Oreat{oY(?-z z`I%dIkm7_^G){gF)X3wu-XJp^aF?nGc)oy?;Mpqf6Dr)>V4o_*GEN%J-(YQP@@IqJ zH@2%9z71c**Y~~I_C(t6-on=z#i3mDDi-DE?ty^%aY4|cJonQ3|_9JhlXnpX!#k}(G2KN>9K-+vEcWULd$30oH)@Na-{z3e|(~FM+R## z$ye?eVqj0}&JdssDmItp!=~8gm!q@pB(<9}NVI-VRCTz8UMX;0e;+D%B=>Y4v90aj zN0!*IM#4F8I90p5 z6QFeMH#(|q$PpZLGL!GPc-r4?P|B9_9N|(K(M?(dv@9%-_F1biU!0x3C;8sx4hw#Z z+#d=CcgLspDsQT0M2KFMhaNac_^vH^MOC%GP0!tMu_R6Joly#XX#};_RP`?Eahrdm z`5dDN_^F|E5$_8=m`c|?PsyR6H7}7-P266nCv%tnG7u?wo9&N5On1_~f1>mXSUI%( zG-Ka`f|onw^9X|n>*7?kFHNAD!R3&D^}&tq=^{X#Gb(ceCW5Dx(_uUf( z(}4|py{6FJY}jE$(TG{@1-f5m;&;w(YCYjzMpq#gHhi&pkrB(pPx^TkTuv%Y#DlWK8SD$)LTYGhKdLNTyckPLrj(fXdO2_$_b#{nO5yU!X+llZov(J z`u}XP6O$NamoZji7@Z!nZal@V-hz;mpATReuUf%y2h@zL)g%WItj9AHcb-bha!Two zOzjl5!ayX`2_oqfwWti|HNPa-UhdoauGb2Y@%sW@BZ?7p?m`E$I_F}yC&&=oD*8UX zH*{(gIUTpUB#MIR!F%tQj@YCYpxf{QmnUP+t7Uu8#_lrw;_WpistB zn6pC!(K%-1qjf9OevESv!EQV%PQS2ar*A{Am!X~0I6g`^kdS9&&Ybi<{c$Vxl;Bo% z+H!zcQDC)kplH6D=@dw|_{HD~cU)@mWvgVXpp(4&x^GujE?hwfP6&{KbJl;%W%N5t z!AI)^>3yM^85_G^&K+~(pxlsc%stoggpIBG^@n%s%=U)KZcZbsURl#lm8B`G^FU2Z z!9wQqOkF$={ze*0cCOajwL`9na!Js-T?a_Hnd>?{#Wg_C7~jHyQB*5P;*#ggeqmX4 zbYXHeCpy=1Yf_U*ajL|0lx4}VR$z2ywh9RBjPc`eHaO!!29!>dqQ!V z!8A;3?%@iA{LeW6JF9;7In^l$bYB7j=rY^IyYyz@t?ie?$U*V?>7@Qnv$MXsLs6?O zFZ*jT8%Y9w$ytFXdEKjCWwxKhmM!%5M|RF==9(&yt6cA>7I#HeUS=jpb=Srbg^N z@W@_|?M1qbOLPWbJ^z!4x?-^$z~XpQt1)ls!@AThupj20M!UiAw65c=Ikf8_W*|Z@ zYTOpeb-SG>VtBwhlIS+T-;KV?0oKl2g}G=&h07p(HJe_^dq05L$#Rg1MpLOpll-!R z^V8IeMsmnZuQ!D5+_T2f&UwY282a3#44=f#>k_?#QQ^zViS_E1ahIFnqEn2o%gM-> zW}<{r?xZZq3A^tWQHJ(s<1R{O&*le1RIO{xWKqQS~V#KoY*(UW6KpyjwJjHME^i3Pc7_%7tp0&JWD`rAu{9F90 z(?VY}vUyuS@Fg!Y7nOV;j{O$6aAPV}U9kK-tD2`!1*Z^l!BMqnkkOrv>-I`2knX#J zs5OzQGwoo>&~M(69Ja4okFE;6_JVw+$gedepYXG2OQs24)V-b25AK3I-=BSGxLXu) zZ(5Tn&H!Q|Ai7bLV-VlM-bt%F!6&Z(TvaDe4bEukmgFtWUHp*G_t)7~IRH0}g~865 zoV?dT4>a;DHCPQe%6}E&QLBw9gVRpe)!!TWd2>027XVlGEatI7WUL`prjJ}UHh4m+LJX|wkI_45$a$g&P=wR5YFj%NtMRNRosRXDBqHX zFHEYGB^#%;9SEFy1C8KYSLyK8Up@Nh2ov?5_rVDn#D?TCQgX4v2di5*5BwrE#{wPI zTCucxSrvc?CozE4pmTT7N@8XhS542;3Oi?1^0pMndho3N ziO!ibGr`{Ht~^l}9)tLmbg>kuok6+^hHnxhHk1vJ>Y0=c8+gl!J5@Z@;%5HNaz=E^ zJcAUt)yH6pJC)BBJ+rGPQ#4JS8ZYvTRA~9A5!ioMgPaIDOJFUAh4C)kK(J&R%p+FV z+%L#ootzC|IT9v=0BcxuWoRi(Su_p+wxqHO=`|{qr|Q0R*N0&(Z}lP%?+2iht8aW{KaMp85ek?A*Sug_z_vM)$q~<+t}`1TR=cGVJGhm&lEW-I zI;W5onDJI8nmtc4SuwEPHxHleKcTPn1kOkZjU+~(ufGI0yjUnxE(()HnDg$bmb%Q0guIs9 zWK!~RSxN;i>5LrTs@TM+iN-r!Crn_rK+Nx|+Qx(RqW>DrO7))S|C9Ib4mJu2>l&R0 zbEXT*Gu>2zry$}t!dS7Y(7vxHAz@tDJKWWdKfk32>+ges7ir4SJ{zDJcztQ@`O!bo zk}=vf=*R1xGL+}%s{R#+q@9t)pHKC|SYx!jp~D=!-W_k>A6&l+J;g_9GK9v-R<=$G zTQBm@7fwc*xNJS2QX3XEA(j#LjsOJr4WVnE2Ng?E!g&|-k`ZmuAA!7sOL21vLuUn4 zh0PqOC!9L}7w`FG%a!o;nSRaYzlmDl<-1WyVXT)`pnW3-;l4Xj!gS!~2x4|+5xsld zpO4E3I{D`4wg}>tbs)#U-W>g%8<>I)d@By195sTvZ`282Vg^>H?+mp}^g+&`BruXR z2Efxl7bhmdFn-hPM%b~xx~(fXCK|P-w1e;rg+M-Iv&;f`Msxlt^mlUq|CRS&dx~5O YxwgOjWP*WzOQBM~bN_bvt%uM58)jfI_5c6? literal 8515 zcmeHNd011~l8^cT0Re3`8wAuwK}FJn5KUxLQEU`YkVPP2k)VJ?*>YK<4T0x^pomcs z(MCi?_9a3BXlMkCfEolLBoGmiHDQeqlFYeu&)eqB%pdQ4-^_gT?icQ%&Z$%PoH|v% zs=CQVCx?Sd3R(&X1VZVM-Tq?;gbaj0tngjA0`vs+{tyD14^D?&Y(a}apb-c>0*ywX z!95*;uL3ko!51ElPDkVMXgs)Aq0`y;C00Bd0R})XJOW?o`1C3~7_9;yX*wE_4yNG| z>3DF*r>CRS)2q^}z=xdw{d~)j&sERst11_;Un=+;D{$xV#u1l1 zNj;r)jb>ZLK`UlDxmA&bv)SeX6{Q!~wN~*3U#W?SiMXql&ji&B#T#8GpgyZ?v`77P zOt+&Z_CCFe5j*Ac1>KT5#5`jSU6{I~z@NnGvDqTkzB$s`J=h>cc-Aq+X=_ zrtV#AEoO%71-vH|_&hJXNUhHkuL^THK`D+kp>qtzxh{?uJ}ObLe9%md`)+u=HqP@{^*OI+w*Fr8AFFjHN0z>Y^YtQ=qcGFGn9`oXI@UfVtEZ-|YV8VExbrgqn_JngHVl-g_ZhH?r;-&UGZ-C9iL(tiopi-B`S$BDvx}YEeNyVkt8_vDF^Fy)~#C%oAD*LN1iOT>)L`m zR7e(zSxoa^PHu7qE(7gY-AJ-*xeEt5N>fC`^%POkSpl)3H zBSi1eSm*X8i@R-XgMNh?*HL)zLA?3w1!C@M()6fF)>-!*j?kgtE%cP|+vCo0gxg1U zJ-cN*mgNiC^TjhhymJ5_gk;YG`1TDZZ> zt}w6CKYAv&1Z|;<|LCB7V$JxI8)I7E=>FE$z_9; zz%O_O!!ydd#4XjEW$&3B8aq;@-7Xm`ZeRU7e$I?NQAM^Duj};=T>;~u3uNW+<+{>6y)=oC zCKg+uoDfRzGRuZI&Y);bYj`Yn0mXb22P07(}r|S z$NRhJUU_fI(ye2Gej0xn%5~;?mg|Z3!t(u~gZ0&BqEe(j-8%XVnKY(r5KQk$DH=;KP$9ofzL$WF)oRG2@2DT26iYCW7j=EPUx}30u zC-a&e2N`th#8IWJmoHzoi~1bjdw#tR2c9!%dIKdMFP-!q*+-%;M9q}a^c)o76H`hN z4t$LePAr;nGV*i7`-es)uW@kbGuH+tPQws1B!x#~>gOXlxP^9b>fGc85w*QOHEIgQ zlZm>nZHR!u#ppY3H?d1XxNvzD9Q(k+@=2tf;-(CPOyK_;xQCB2VjDXG0s4rl&oeakis!7x&kUya`oalWKAnfQ%qMw+B9 z&(KcNG$gPbzppF(wxL1npKKAZ_Tv$4%YpcwNMc~IV9w!ywCPA7{e?r%j2V|S9?8k> zG9?Xigx;ucqMCXE1>SUOeRb5-ecS_Hv6W7?c>ZgBogUJ8uG)Te)+VsU3m!^*-MfWp zrqAQ+jyaTm*g)1aM4DueiG`dBJ|1cD8Md+@T|P~(DW8_ew(>$XgbaXHwJWJ1d>M)$ z;4U>905LdeB1(ec+)4#l6-mNRM=7eE12Rz_`t&Am13DsbBQJi(rSWXsRb!(Q<_7zK z_K&I1=+p^hxfYnANT&8Sk_&)n`b*sab?o(>Q z$0vUm(w-fR@SX5lvGTIlfJMZUW&L~g>Ar__NtX-0>S zi`dkrX(FduHa*MXi>yNDmpH4f7Rv6Kg7f77rp!LB8N^2^( z%i-pHtCBYORAWrnJ!w_NR#|_($IclRECYJTg=RCZmGMn$>HKLFRPkx=*UPRHuc*dD z2ZN@QDBD+)!p8@&!c&z>ipcy&8Kvq|Kq&3ybf)>9I1}k@W3w?`l+)X~I1o7KR9E)Y zs>p@MG;>Gy$jK z!-S{jX+wsh%i|{j8|ncx!U2X?z$Zv&^(dM|j>)Qu{6c{wn1DA25H;SCOwCD&9cncr z@nTXm-GbT!mn$OQ-gAQbEWV1MZ;|CK3!ce@Js5OMw-nt{2+v3&PL2IBEf!a1Sm(xTgbx2vazo&k&UyEN-ieQ= zCy>uq0pAV|_Gm8N4AACxz$gu-TTS2=c-y#G5gLYSc|N;#o8y9aqz$*&0PtNC=(g|i z^M)>XYseEw1U?KJix)j9RLsw?d^ix5*~`~z==Un zWSQrv#H0X@S|3MF;>tI7FThy#wXHHk&Ra-f57n8bX@2x=nT0sk%gzE%IZPyLemwmI z(|$6)}B*cH8Q=u3z+B>pjUrsGdo`byk{Rp3t_yUfk6+}dNhhbsBu|unnrZt zYTN3KCV((9wUJO1PZG^Rk|InOB8=723*;XF3Gm*_pF7~7^XEj^D2ypc6S;|<#zJA# zG%Z-RlqqlQf~3#gmy3t;IsMnjZ$V)C-7Pt|DJHzR1lI;%6u`#f`9@eHdfazg_=SU3c0>bnQju|AZ{=dU~k=hR>fQwGInj`xrjz(n9kzOE}uSio<5bYYDA z&0)fXz`~qXF!%oH1xF(Tvq%zu<~Wi>2TOO;Ensz%g`Y(&<3TwS#Kihy(KcfnuqzXu z1$We#!HyJmiZ|8Y1<$ty#bO8NC1=ts*$N8)`Qy23g1TGSdpxpd@&%4Y^lL%Ja7ORD z;bPmc^WGXY0Z`BeyV1$z7zbEa6s?*jO%l2atc?v6s^idl@@wF(8(EI<7Ox4e2J*Sl zQ4tX{Y*x`{`C`Fx_2ypdcR61=OO$H>VaG99ocV=D{K>czBvaAVwqXgPb0m^9CD693 z8JNWKo8&*NRK=eEktg#{Xi8*Zv>Na4@2BJ**HuG;CoX096YsOTmj`w$gHQ^SsCwgaIIH-}Y#!!Xs?}?{ z6&0JjiQ%`qmB6`zGXKwsJfK0e^#vvBw};w$a^`Q@D=lTL!@prQVf(*J)e{~VjQd~WNMD1`PT8j0ccQ!u&A-7)Kx0F+kadCHhO-88*5l+k5?4g1YV>O{fEDR zWM6MPxD!dY|EghVu^9oh%pMVd(&GM}zfyQfGJ|au>bDG-Tk0C@c|c;MXNf$S6CKB( zCMMsQs?}}uo4OQph}CdT6}*jZZ{>gH=5I(Y*$|8i2ZcU(@u3JJom)02rJb;#jutR?B)d|CTVJ{!J6AazH9zI(Hvpo4n*mroL($vFb`A*tObQ$RvzuggZ~3H z`G4~IYuuO>m}ommpHcRN{l*0?HnBtD!96;PmkWy*GGZ` zG33Y%n`8`&YXu4Fz!m-*z$?jCL|R7&6WBGV=MH(ekn`LgcGZMZXxe7uh@Cr{%@1_{ zx}Lo@KsC__^LjJ(fyteZv3J&<)XoJ5a^_0eMH>Y|-oLv3K}{fEH~=90=Y*xdBZW&& zE)FGv^an%uN#%2UeDA0(MYo|cnIP(#n#)zmlMBlhItpt-ohF4MmY9%GyU03}-B4@N z9F+E;06FL`S^pi^mU}g7^dc=UWh&5;!yi%RH%)gjL@eV zL!zO6zD&wa{_FJx7Rg0*H~eLkH}bsupVJ}=W_%>SUM`vtU?Zrbp{}uQqEAyI@4)Dk z+%?!vzaZ(eVNX&(`Ul;8Zn)PMm&;ufw2ex|w8@y6ETPH)1NC-$m7x<&l{)dJ3teG? z$I|NX;?BoMB8y3b!TsJ>{c~UZuFNkL}{)a9+xNC+i)!uv%dWvKXMeXOf#Z$aX-*|m3~ zw=`W^n%_7`^o=lf3Emzf9(*c&wws>2>|V~qVR4l?()d7>m$QD`-79V1(=aN=K|5ym zc9zGsDVMeRpNhKS9{@B^+xb;*WBqb z7@cnliAs0gicZ$JTK2|9pWgNKRKADLjmp^k<0-=DzvPgu_^9_uGhz$1+RqzbnY;f^*Eullzjx^bEv1DMq0EXvp=lkPCjgzbets7pPkt#u4uSSS|^){U31!uuCBX}m1{&? zEzb{B3eI-0n*0bumnPAhR-3FPQFw+4) zwlpxKqyWNMrL*RUI#RDjKfEV2R%`4x8^aGB4d&rlL>&883+9%G(Gq*t~N z=w!(g@|xZb8rtjbXVBg z+;=MB&V-X45mDxOT<2zc=OYDSg~_Gcc!hIozvBj_Uj3Eu)DtBQAE|kRD#&TveP~}L z-!s*XyeC$^AUkFUrvmL}fT=|{$D}>5El>3xD71+b_IMRc2%jaT*a|ocMfFN>K+^2p--=@Sx~hr6t!2^G+@Mjoiomp>KQT~1|zYW2_bV) z1>wizM~fXgp3Z`${G^oAL1P&?MMI9#NXb}E5TPksaMFoyY-JgScVsV@wbDv znZ-+-*$(B_;~@DO_(08do1}H+HJvLI_ND2uJ;&Dv1|1!8PDaXkOoQhmFo*sJl8-;v zUH?!9NZD>0_db4lG*D8X5%})Gi@=pg&o9$Fow~6JvfK(q`6bF?B8h?qU)$`1o{$A) zrb(0&eX?%hO;mZ{Akmd*H1mB2iX% z6_B$qO8_L=Mzi4MnS;?a*b(sh=X+jW!hcCro6`qy4|ehbm~obLJ>jzt);i$5(Db~( zp|kZ|B`98(h` MTZjEcdwqWXHvsz{sQ>@~ diff --git a/docs/index.html b/docs/index.html index bb977f5..fc5dace 100644 --- a/docs/index.html +++ b/docs/index.html @@ -124,7 +124,7 @@

ICAR-National Bureau of Plant Genetic Resources, New Delhi


-

minimal R version License: GPL v3 CRAN_Status_Badge rstudio mirror downloads develVersion Project Status: Active lifecycle Last-changedate Rdoc Zenodo DOI Analytics

+

minimal R version License: GPL v3 CRAN_Status_Badge rstudio mirror downloads develVersion Project Status: Active lifecycle Last-changedate Rdoc Zenodo DOI Analytics


@@ -172,8 +172,8 @@


 To cite the R package 'germinationmetrics' in publications use:
 
-  Aravind, J., Vimala Devi, S., Radhamani, J., Jacob, S. R., and Kalyani Srinivasan (2020).  germinationmetrics:
-  Seed Germination Indices and Curve Fitting. R package version 0.1.4,
+  Aravind, J., Vimala Devi, S., Radhamani, J., Jacob, S. R., and Kalyani Srinivasan (2020).  germinationmetrics: Seed
+  Germination Indices and Curve Fitting. R package version 0.1.4,
   https://github.com/aravind-j/germinationmetricshttps://cran.r-project.org/package=germinationmetrics.
 
 A BibTeX entry for LaTeX users is
@@ -187,8 +187,8 @@ 

note = {https://cran.r-project.org/package=germinationmetrics}, } -This free and open-source software implements academic research by the authors and co-workers. If you use it, please -support the project by citing the package.

+This free and open-source software implements academic research by the authors and co-workers. If you use it, please support +the project by citing the package.

diff --git a/docs/news/index.html b/docs/news/index.html index bacc5d1..ab0ed7e 100644 --- a/docs/news/index.html +++ b/docs/news/index.html @@ -200,6 +200,8 @@

  • Error in case of non-uniform intervals converted to warning.
  • Fixed documentation errors in FourPHFfit and CVGermTime.
  • Updated documentation for GermSpeed, GermSpeedAccumulated, CUGerm MeanGermRate, SEGermRate, CVG, MeanGermTime, VarGermTime, SEGermTime, GermUncertainty, GermSynchrony, MeanGermPercent, MeanGermNumber, WeightGermPercent, TimsonsIndex, GermRateGeorge and GermSynchrony.
  • +
  • Converted all equations in Rd files to MathJaxusing mathjaxr +
  • diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml index 31db431..71fcec8 100644 --- a/docs/pkgdown.yml +++ b/docs/pkgdown.yml @@ -1,9 +1,9 @@ -pandoc: 2.7.2 +pandoc: 2.7.3 pkgdown: 1.5.1 pkgdown_sha: ~ articles: Introduction: Introduction.html -last_built: 2020-06-15T15:26Z +last_built: 2020-06-16T06:31Z urls: reference: https://aravind-j.github.io/germinationmetrics//reference article: https://aravind-j.github.io/germinationmetrics//articles diff --git a/docs/reference/FourPHFfit.bulk.html b/docs/reference/FourPHFfit.bulk.html index 70ae241..77fbe08 100644 --- a/docs/reference/FourPHFfit.bulk.html +++ b/docs/reference/FourPHFfit.bulk.html @@ -266,6 +266,7 @@

    See a

    Examples

    +# \donttest{ data(gcdata) counts.per.intervals <- c("Day01", "Day02", "Day03", "Day04", "Day05", @@ -355,7 +356,8 @@

    Examp #> 12: 4.893597 6.684521 7.763844 4.806015 2.957830 #> 13: 4.841310 6.509952 7.850339 4.816395 3.033943 #> 14: 4.915143 6.397486 7.432360 4.869401 2.562960 -#> 15: 4.892505 6.667247 7.785804 4.813086 2.972718

    +#> 15: 4.892505 6.667247 7.785804 4.813086 2.972718
    # } +