-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict.py
171 lines (139 loc) · 5.83 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import argparse
import os
import sys
import torch
import tqdm
from matplotlib import pyplot as plt
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import RichProgressBar, RichModelSummary
from pytorch_lightning.strategies import DDPStrategy
from architectures.reconstruction import ReconstructionMae
from architectures.segmentation import SegmentationMae
from utils.prepare import experiment_from_args
from utils.visualize import save_reconstructions, upscale_patch_values
def define_args(parent_parser):
parser = parent_parser.add_argument_group('predict.py')
parser.add_argument('--load-model-path',
help='load model from pth',
type=str,
required=True)
parser.add_argument('--max-batches',
help='number of batches from dataset to process',
type=int,
default=99999999999999)
parser.add_argument('--visualization-path',
help='path to save visualizations to',
type=str)
parser.add_argument('--ddp',
help='use DDP acceleration strategy',
type=bool,
default=False,
action=argparse.BooleanOptionalAction)
parser.add_argument('--test',
help='do test',
type=bool,
default=False,
action=argparse.BooleanOptionalAction)
parser.add_argument('--split',
help='split to use',
choices=['train', 'val', 'test'],
type=str,
default=None)
parser.add_argument('--dump-path',
help='do latent dump to file',
type=str,
default=None)
parser.add_argument('--avg-glimpse-path',
help='do avg glimpse to file',
type=str,
default=None)
parser.add_argument('--last-only',
help='save visualizations only for the last step',
type=bool,
default=False,
action=argparse.BooleanOptionalAction)
return parent_parser
def do_visualizations(args, model, loader):
print(model.load_state_dict(torch.load(args.load_model_path, map_location='cpu')['state_dict']))
model = model.cuda()
model.eval()
model.debug = True
assert isinstance(model, ReconstructionMae) or isinstance(model, SegmentationMae)
for idx, batch in enumerate(tqdm.tqdm(loader, total=min(args.max_batches, len(loader)))):
if idx >= args.max_batches:
break
out = model.predict_step([x.cuda() for x in batch], idx)
save_reconstructions(model, out, batch, vis_id=idx, dump_path=args.visualization_path, last_only=args.last_only)
model.debug = False
def do_dump_latent(args, model, loader):
os.makedirs(args.dump_path, exist_ok=True)
model.load_pretrained_mae(args.load_model_path)
model = model.cuda()
model.eval()
model.debug = True
latents = []
targets = []
for idx, batch in enumerate(tqdm.tqdm(loader, total=min(args.max_batches, len(loader)))):
if idx >= args.max_batches:
break
out = model.predict_step([x.cuda() for x in batch], idx)
latents.append(out['steps'][-1]['latent'])
targets.append(batch[1])
latents = torch.cat(latents, dim=0)
targets = torch.cat(targets, dim=0)
torch.save({'latents': latents, 'targets': targets}, os.path.join(args.dump_path, f'embeds_{args.split}.pck'))
model.debug = False
def do_avg_glimpse(args, model, loader):
model.load_state_dict(torch.load(args.load_model_path, map_location='cpu')['state_dict'])
model = model.cuda()
model.eval()
avg_mask = None
items = 0
for idx, batch in enumerate(tqdm.tqdm(loader)):
if idx >= args.max_batches:
break
out = model.predict_step([x.cuda() for x in batch], idx)
items += out['mask'].shape[0]
if avg_mask is None:
avg_mask = out['mask'].detach().clone().cpu().float().sum(dim=0)
else:
avg_mask += out['mask'].detach().clone().cpu().float().sum(dim=0)
avg_mask /= items
grid_h = model.mae.grid_size[0]
grid_w = model.mae.grid_size[1]
patch_size = model.mae.patch_embed.patch_size
avg_mask = avg_mask.reshape(grid_h, grid_w).numpy()
avg_mask = upscale_patch_values(avg_mask, patch_size)
plt.imsave(args.avg_glimpse_path, avg_mask)
def do_test(args, model, loader):
trainer = Trainer(accelerator='auto', callbacks=[RichProgressBar(leave=True), RichModelSummary(max_depth=3)],
strategy=DDPStrategy(find_unused_parameters=False) if args.ddp else None)
trainer.test(model=model, ckpt_path=args.load_model_path, dataloaders=loader)
def main():
data_module, model, args = experiment_from_args(sys.argv, add_argparse_args_fn=define_args, no_aug=True)
split = args.split
if split is None:
if data_module.has_test_data:
split = 'test'
else:
split = 'val'
if split == 'test':
data_module.setup('test')
else:
data_module.setup('fit')
args.split = split
loader = {
'train': data_module.train_dataloader,
'val': data_module.val_dataloader,
'test': data_module.test_dataloader
}[split]()
if args.visualization_path is not None:
do_visualizations(args, model, loader)
if args.test:
do_test(args, model, loader)
if args.dump_path is not None:
do_dump_latent(args, model, loader)
if args.avg_glimpse_path is not None:
do_avg_glimpse(args, model, loader)
if __name__ == "__main__":
main()