-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquantum_utils_CLOUD.py
608 lines (482 loc) · 19.9 KB
/
quantum_utils_CLOUD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, transpile
from qiskit_ibm_runtime import QiskitRuntimeService
from minimum_search_oracle import minimum_search
import plotly.graph_objects as go
from plotly.offline import plot
import matplotlib.pyplot as plt
import math
import random
from tqdm import tqdm
import numpy as np
from math import pi
import time
from classical_utils import euclidean_distance
# ======================================================================================================================
# Global functions
# ======================================================================================================================
def apply_quantum_find_min(row, backend):
"""
Applique la fonction quantum_find_min à une ligne de la matrice de distances.
"""
row = row.tolist()
print(f"Liste: {row}")
print(f"types: {type(row[0])}")
# On re scale les valeurs pour qu'elles soient entre 0 et 63 (à cause de la limite matérielle des simulateurs)
row = [int(63 * (x - min(row)) / (max(row) - min(row))) for x in row]
# Appeler quantum_find_min et retourner seulement l'index
index = minimum_search(row, backend)
print(f"List of bits: {row}, index of the min: {index}")
return index
# ======================================================================================================================
# Find the minimum of a list of integers using quantum computing and bitstrings comparator
# ======================================================================================================================
def qubits_needed(n):
if n < 0:
raise ValueError("Le nombre doit être non négatif")
elif n == 0:
return 1 # Un qubit est nécessaire pour représenter 0
else:
return math.ceil(math.log2(n + 1))
def encode(bit, plot_circuit=False):
qr = QuantumRegister(1, "number")
qc = QuantumCircuit(qr)
if bit == "1":
qc.x(qr[0])
if plot_circuit:
qc.draw(output="mpl")
plt.show()
return qc
def encode_bitstring(bitstring, plot_circuit=False):
bits = len(bitstring)
qr = QuantumRegister(bits, "bit")
qc = QuantumCircuit(qr)
for i in range(bits):
if bitstring[i] == "1":
qc.x(qr[i])
if plot_circuit:
qc.draw(output="mpl")
plt.show()
return qc
def bit_compare():
qr = QuantumRegister(2, "bits")
aux = QuantumRegister(2, "aux")
qc = QuantumCircuit(qr, aux)
qc.x(qr[1])
qc.mcx(qr, aux[0])
qc.x(qr[0])
qc.x(qr[1])
qc.mcx(qr, aux[1])
qc.x(qr[0])
return qc
def bits_to_int(bits):
"""
Convert a string of bits to an integer
:param bits: string of bits, e.g. "101"
:return: integer representation of bits, e.g. 5
"""
return int(bits, 2)
def int_to_bits(integer):
"""
Convert an integer to a bitstring using the minimum number of bits
:param integer: integer to convert
:return: bitstring representation of integer
"""
return format(integer, "b")
def compare_bitstring(bitstring_a, bitstring_b, return_time=False, shots=1024):
"""
Compare two bitstrings using quantum computing.
Parameters:
bitstring_a: first bitstring to compare, e.g. "101"
bitstring_b: second bitstring to compare, e.g. "010"
return_time: if True, return the circuit time
shots: number of shots to perform
Example:
>>> bitstring_a = "101"
>>> bitstring_b = "010"
>>> counts = compare_bitstring(bitstring_a, bitstring_b, plot_circuit=False)
>>> print(counts)
{'01': 1024}
Return:
counts: dict, counts of the different results of the comparison
time: float, time of the circuit execution (if return_time=True)
Interpretation of the results:
- If '01' has higher score, then the second bitstring is smaller
- If '10' has higher score, then the first bitstring is smaller
- If '00' has higher score, then the bitstrings are equal
"""
bits = max(
qubits_needed(bits_to_int(bitstring_a)), qubits_needed(bits_to_int(bitstring_b))
)
qra = QuantumRegister(bits, "a")
qrb = QuantumRegister(bits, "b")
qraux = QuantumRegister(2 * bits, "aux")
qrint = QuantumRegister(bits - 1, "int")
cr = ClassicalRegister(2)
qc = QuantumCircuit(qra, qrb, qraux, qrint, cr)
for i in range(bits):
qc.append(encode(bitstring_a[i]).to_instruction(), [qra[i]])
qc.append(encode(bitstring_b[i]).to_instruction(), [qrb[i]])
qc.append(
bit_compare().to_instruction(),
[qra[i], qrb[i], qraux[2 * i], qraux[2 * i + 1]],
)
if i < bits - 2:
qc.x(qraux[2 * i])
qc.x(qraux[2 * i + 1])
qc.mcx([qraux[2 * i], qraux[2 * i + 1]], qrint[i])
qc.x(qraux[2 * i])
qc.x(qraux[2 * i + 1])
for i in range(0, bits - 1):
qc.mcx([qraux[2 * (-i - 1)], qrint[-i]], qraux[2 * (-i)])
qc.mcx([qraux[2 * (-i - 1) + 1], qrint[-i]], qraux[2 * (-i) + 1])
qc.measure(qraux[0], cr[0])
qc.measure(qraux[1], cr[1])
# Do the simulation, returning the result
qc_transpile = transpile(qc, backend)
result = backend.run(qc_transpile, shots=shots).result()
circuit_time = result.results[0]._metadata["metadata"]["sample_measure_time"]
# get the probability distribution
counts = result.get_counts()
if return_time:
return counts, circuit_time
return counts
# Test compare_bitstring
# a = "11"
# b = "01"
# counts, time_c = compare_bitstring(a, b, plot_circuit=False, return_time=True)
# print(f"First bitstring: '{a}', that is {bits_to_int(a)}")
# print(f"Second bitstring: '{b}', that is {bits_to_int(b)}")
# print(counts)
# if '01' has higher score, then the second bitstring is smaller
# if '10' has higher score, then the first bitstring is smaller
# if '00' has higher score, then the bitstrings are equal
def accuracy_compare_bitstring(n_times=100, bits=4, shots=10):
"""
Compare n times 2 random bitstrings and compute the accuracy of the comparison
Results:
- 70% accuracy with 100 tests, 4 bits, 1024 shots
- 67% accuracy with 100 tests, 4 bits, 2048 shots
- 74% accuracy with 100 tests, 4 bits, 100 shots
- 78% accuracy with 100 tests, 4 bits, 10 shots
- 73% accuracy with 100 tests, 4 bits, 1 shots
- 74% accuracy with 100 tests, 3 bits, 1 shots
- 72% accuracy with 100 tests, 5 bits, 1 shots
- 69% accuracy with 100 tests, 6 bits, 1 shots
"""
nb_success = 0
for _ in tqdm(range(n_times)):
a = int_to_bits(random.randint(0, 2**bits - 1))
b = int_to_bits(random.randint(0, 2**bits - 1))
counts = compare_bitstring(a, b, shots=shots)
# get the most frequent result
result = max(counts, key=counts.get)
if result == "01" and bits_to_int(a) > bits_to_int(b):
nb_success += 1
elif result == "10" and bits_to_int(a) < bits_to_int(b):
nb_success += 1
elif result == "00" and bits_to_int(a) == bits_to_int(b):
nb_success += 1
print(f"Accuracy: {round((nb_success / n_times)*100, 3)}")
def compare_bitstring_compare_time():
"""
Compare the time of the classical and quantum compare_bitstring functions with different bits size (mean)
"""
bits_size = [1, 2, 3, 4, 5, 6]
N = 100 # test N times for each bits size
classical_pourcentage = []
quantum_pourcentage = []
for j in tqdm(range(N)):
time_classical = []
time_quantum = []
for i in bits_size:
b1 = int_to_bits(2**i - 1)
b2 = int_to_bits(2**i - 2)
start_time = time.time()
_ = min(b1, b2)
end_time = time.time()
time_classical.append(end_time - start_time)
_, time_q = compare_bitstring(b1, b2, return_time=True)
time_quantum.append(time_q)
# Compute the pourcentage of difference between the first and the last time for both classical and quantum
classical_pourcentage.append(
(time_classical[-1] - time_classical[0])
/ max(time_classical[0], 0.00001)
* 100
)
quantum_pourcentage.append(
(time_quantum[-1] - time_quantum[0]) / time_quantum[0] * 100
)
print(f"Classical pourcentage mean: {np.mean(classical_pourcentage)}")
print(f"Quantum pourcentage mean: {np.mean(quantum_pourcentage)}")
# compare_bitstring_compare_time()
def quantum_find_max(list_of_bits, shots=1024, only_index=False) -> (int, int):
"""
Find the maximum bitstring in a list of bitstrings and return its index
:param list_of_bits: list of bitstrings to compare e.g. ["0101", "0100", "0110", "0010", "1001"]
:param shots: number of shots to perform
:param only_index: if True, return only the index of the maximum bitstring
:return: value of the max and index of it in list_of_bits or only the index
"""
max_index = 0
max_value = bits_to_int(list_of_bits[0])
for i in range(1, len(list_of_bits)):
# print(f"Comparing {list_of_bits[min_index]} and {list_of_bits[i]}")
counts = compare_bitstring(
list_of_bits[max_index], list_of_bits[i], shots=shots
)
if "01" not in counts:
counts["01"] = 0
if "10" not in counts:
counts["10"] = 0
if counts["01"] < counts["10"]:
max_index = i
max_value = bits_to_int(list_of_bits[i])
if only_index:
return max_index
return max_value, max_index
# test_quantum_find_max
def test_quantum_find_max():
bitstrings = ["1101", "0010", "1110", "0110", "0101", "1111", "1011"]
max_value, max_index = quantum_find_max(bitstrings, shots=4096)
print(f"Bitstring : {[bits_to_int(bitstring) for bitstring in bitstrings]}")
print(
f"The maximum bitstring is: {bitstrings[max_index]}, with value {max_value} and index {max_index}"
)
return max_value, max_index
def plot_success_rate_min():
nb_tests = 50
nb_bits = [2, 3, 4, 5, 6, 7, 8]
success_rate_size_5 = [0.72, 0.82, 0.52, 0.46, 0.48, 0.44, 0.38]
success_rate_size_3 = [0.74, 0.96, 0.7, 0.62, 0.68, 0.62, 0.52]
# Using plotly, create a scatter plot of the success rates with 2 lines
fig = go.Figure()
# With size 5, nb_bits on x-axis, success rate on y-axis
fig.add_scatter(
x=nb_bits,
y=success_rate_size_5,
name="Liste de 5 entiers",
line=dict(color="firebrick", width=2, dash="dot"),
)
# With size 3, nb_bits on x-axis, success rate on y-axis
fig.add_scatter(
x=nb_bits,
y=success_rate_size_3,
name="Liste de 3 entiers",
line=dict(color="royalblue", width=2, dash="dot"),
)
fig.update_layout(
xaxis_title="Nombre de bits pour représenter un entier",
yaxis_title=f"Taux de réussite de la recherche du minimum sur {nb_tests} tests",
template="plotly_white",
# text size
font=dict(size=20),
)
# legend top right
fig.update_layout(legend=dict(x=0.8, y=0.9))
plot(fig, filename="success_rate.html")
# plot_success_rate()
def get_success_rate_max(nb_bits=5, list_size=3, nb_tests=50, shots=4096):
"""
Get the success rate of quantum_find_max with random bitstrings
:param nb_bits: number of bits to represent each integer
:param list_size: number of integers in the list
:param nb_tests: number of tests to perform
:param shots: number of shots to perform
"""
random.seed(0)
nb_success = 0
for _ in tqdm(range(nb_tests)):
list_of_ints = [random.randint(0, 2**nb_bits - 1) for _ in range(list_size)]
list_of_bits = [int_to_bits(integer) for integer in list_of_ints]
max_value, max_index = quantum_find_max(list_of_bits, shots=shots)
if max_value == max(list_of_ints):
nb_success += 1
print(
f"# Pourcentage de réussite avec une liste de {list_size} elements sur {nb_bits} "
f"bits : {nb_success / nb_tests} ({nb_tests} tests)"
)
return nb_success / nb_tests
# get_success_rate_max(4, 5, 50, 4096)
# Success rate with find_max
# Pourcentage de réussite avec une liste de 5 elements sur 4 bits : 0.64 (50 tests)
# Pourcentage de réussite avec une liste de 3 elements sur 4 bits : 0.82 (50 tests)
# ======================================================================================================================
# Compute distance two vectors using quantum computing
# ======================================================================================================================
def _encode_feature(x):
"""
We map data feature values to \theta and \\phi values using this equation:
\\phi = (x + 1) \frac{\\pi}{2},
where \\phi is the phase and \theta the angle
"""
return (x + 1) * pi / 2
def _binary_combinations(n):
"""
Returns all possible combinations of length n binary numbers as strings
"""
combinations = []
for i in range(2**n):
bin_value = str(bin(i)).split("b")[1]
while len(bin_value) < n:
bin_value = "0" + bin_value
combinations.append(bin_value)
return combinations
def _binary_combinations_pos(n, index):
"""
Returns all possible combinations of binary numbers where bit index=1
"""
combinations_pos = []
for bin_number in _binary_combinations(n):
if bin_number[n - index - 1] == "1":
combinations_pos.append(bin_number)
return combinations_pos
def distance_centroids_parallel(
point, centroids, backend, shots=1024, return_time=False
):
"""
Estimates distances using quantum computer specified by backend
Computes it in parallel for all centroids
Parameters:
point: point to measure distance from, e.g. [0.1, 0.2]
centroids: list of centroids, e.g. [[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]] (3 centroids so list of length 3)
backend: backend to use
shots (int): number of shots to use
return_time (bool): if True, return the circuit time
Example:
>>> point = [0.1, 0.2]
>>> centroids = [[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]]
>>> dist = distance_centroids_parallel(point, centroids, backend, shots=1024)
"""
k = len(centroids)
x_point, y_point = point[0], point[1]
# Calculating theta and phi values
phi_list = []
theta_list = []
for i in range(k):
phi_list.append(_encode_feature(centroids[i][0]))
theta_list.append(_encode_feature(centroids[i][1]))
phi_input = _encode_feature(x_point)
theta_input = _encode_feature(y_point)
# We need 3 quantum registers, of size k one for a data point (input),
# one for each centroid and one for each ancillary
qreg_input = QuantumRegister(k, name="qreg_input")
qreg_centroid = QuantumRegister(k, name="qreg_centroid")
qreg_psi = QuantumRegister(k, name="qreg_psi")
# Create a one bit ClassicalRegister to hold the result
# of the measurements
creg = ClassicalRegister(k, "creg")
# Create the quantum circuit containing our registers
qc = QuantumCircuit(qreg_input, qreg_centroid, qreg_psi, creg, name="qc")
if not backend:
raise Exception("No backend specified")
for i in range(k):
# Encode the point to measure and centroid
qc.u(theta_list[i], phi_list[i], 0, qreg_centroid[i])
qc.u(theta_input, phi_input, 0, qreg_input[i])
# Apply a Hadamard to the ancillaries
qc.h(qreg_psi[i])
# Perform controlled swap
qc.cswap(qreg_psi[i], qreg_input[i], qreg_centroid[i])
# Apply second Hadamard to ancillary
qc.h(qreg_psi[i])
# Measure ancillary
qc.measure(qreg_psi[i], creg[i])
qc = transpile(qc, backend)
job = backend.run(qc, shots=shots)
job_result = job.result()
result = job_result.get_counts(qc)
distance_centroids = [0] * k
for i in range(k):
keys_centroid_k = _binary_combinations_pos(k, i)
for key in keys_centroid_k:
if key in result:
distance_centroids[i] += result[key]
if return_time:
circuit_time = job_result.results[0]._metadata["metadata"][
"sample_measure_time"
]
return distance_centroids, circuit_time
return distance_centroids
def distances_for_multiple_examples_tests(
num_examples=300, num_centroids=3, verbose=True, shots=1024
):
"""
Test the distance_centroids_parallel function on multiple examples
:param num_examples: int, number of examples
:param num_centroids: int, number of centroids
:param verbose: if True, print the results of each example
:param shots: int, number of shots to use
Examples:
# num_examples=100, shots=2048, num_centroids=5
Les tests sont terminés, 19 erreurs ont été trouvées sur 100 exemples.
- 81.0 % de réussite !
# num_examples=300, shots=4096, num_centroids=5
Tests finished, 40 errors were found out of 200 examples.
- 88.0 % success rate !
"""
nb_failures = 0
for i in tqdm(range(num_examples)):
if verbose:
print(f"\n === Example {i + 1}")
# Génération aléatoire d'un point et d'une liste de centroids
point = np.random.rand(2).tolist() # Point dans [0, 1] x [0, 1]
centroids = [np.random.rand(2).tolist() for _ in range(num_centroids)]
# Utilisation du simulateur comme backend
service = QiskitRuntimeService()
backend = service.backend("simulator_mps")
# Calculer les distances quantiques
quantum_distances = distance_centroids_parallel(
point, centroids, backend, shots=shots
)
# Calculer les distances euclidiennes
euclidean_distances = [
euclidean_distance(np.array(point), np.array(centroid))
for centroid in centroids
]
if verbose:
print(f"\nQuantum distances: {quantum_distances}")
print(f"Euclidean distances: {euclidean_distances}")
# Vérifier si l'indice du minimum est le même
if np.argmin(quantum_distances) != np.argmin(euclidean_distances):
if verbose:
print(
f"\nError: the indices of the minimum distances are not the same for example {i + 1}"
)
nb_failures += 1
else:
if verbose:
print(
f"\nIndices of the minimum distances are the same for example {i + 1}"
)
print(
f"\n Tests finished, {nb_failures} errors were found out of {num_examples} "
f"examples.\n - {(num_examples-nb_failures) / num_examples * 100} % success rate !"
)
# distances_for_multiple_examples_tests(num_examples=300, verbose=False, shots=4096)
def quantum_vs_classical_time_distances_compute():
"""
Compare the time of the classical and quantum distance_centroids_parallel
"""
data_point = [0.1, 0.2]
centroids = [[0.1, 0.2], [0.3, 0.4], [0.5, 0.6], [0.7, 0.8]]
# - Classical time: 0.00019216537475585938 seconds
# - Quantum time: 0.002270349 seconds, backend: ibmq_qasm_simulator
# classical
start_time = time.time()
for centroid in centroids:
_ = euclidean_distance(np.array(data_point), np.array(centroid))
end_time = time.time()
classical_time = end_time - start_time
print(f"- Classical time: {classical_time} seconds")
# quantum
service = QiskitRuntimeService()
backend = service.backend("simulator_mps")
_, quantum_time = distance_centroids_parallel(
data_point, centroids, backend, shots=512, return_time=True
)
print(f"- Quantum time: {quantum_time} seconds, backend: simulator_mps")
# quantum_vs_classical_time_distances_compute()
if __name__ == "__main__":
# IBMQ account
service = QiskitRuntimeService()
backend = service.backend("simulator_mps") # simulator_mps, ibmq_qasm_simulator