forked from DmitryUlyanov/deep-image-prior
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsuper-resolution_eval_script.py
68 lines (50 loc) · 2.61 KB
/
super-resolution_eval_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# This script had been used to get the numbers in the paper
from utils.common_utils import get_image, plot_image_grid
import cv2
def rgb2ycbcr(im_rgb):
im_rgb = im_rgb.astype(np.float32)
im_ycrcb = cv2.cvtColor(im_rgb, cv2.COLOR_RGB2YCR_CB)
im_ycbcr = im_ycrcb[:,:,(0,2,1)].astype(np.float32)
im_ycbcr[:,:,0] = (im_ycbcr[:,:,0]*(235-16)+16)/255.0 #to [16/255, 235/255]
im_ycbcr[:,:,1:] = (im_ycbcr[:,:,1:]*(240-16)+16)/255.0 #to [16/255, 240/255]
return im_ycbcr
def compare_psnr_y(x, y):
return compare_psnr(rgb2ycbcr(x.transpose(1,2,0))[:,:,0], rgb2ycbcr(y.transpose(1,2,0))[:,:,0])
from collections import defaultdict
datasets = {
'Set14': ["baboon", "barbara", "bridge", "coastguard", "comic", "face", "flowers", "foreman", "lenna", "man", "monarch", "pepper", "ppt3", "zebra"],
# 'Set5': ['baby', 'bird', 'butterfly', 'head', 'woman']
}
from glob import glob
# g = sorted(glob('../image_compare/data/sr/Set5/x4/*'))
from skimage.measure import compare_psnr
# our
stats = {}
imsize = -1
dct = defaultdict(lambda : 0)
for cur_dataset in datasets.keys():
for method_name in postfixes:
psnrs = []
for name in datasets[cur_dataset]:
img_HR = f'/home/dulyanov/dmitryulyanov.github.io/assets/deep-image-prior/SR/{cur_dataset}/x4/{name}_GT.png'
ours = f'/home/dulyanov/dmitryulyanov.github.io/assets/deep-image-prior/SR/{cur_dataset}/x4/{name}_deep_prior.png'
method = f'/home/dulyanov/dmitryulyanov.github.io/assets/deep-image-prior/SR/{cur_dataset}/x4/{name}_{method_name}.png'
gt_pil, gt = get_image(img_HR, imsize)
ours_pil, ours = get_image(ours, imsize)
method_pil, methods = get_image(method, imsize)
if methods.shape[0] == 1:
methods = np.concatenate([methods, methods, methods], 0)
q1 = ours[:3].sum(0)
t1 = np.where(q1.sum(0) > 0)[0]
t2 = np.where(q1.sum(1) > 0)[0]
psnr = compare_psnr_y(gt [:3,t2[0] + 4:t2[-1]-4,t1[0] + 4:t1[-1] - 4],
methods[:3,t2[0] + 4:t2[-1]-4,t1[0] + 4:t1[-1] - 4])
# psnr = compare_psnr(gt [:3],
# ours[:3])
psnrs.append(psnr)
print(name, psnr)
header = f'\small{{{method_name}}} & ' + ' & '.join([f'${x:.4}$' for x in psnrs])
stats[method_name] = [header, np.mean(psnrs)]
print (header)
names = datasets[cur_dataset]
header = ' & ' + ' & '.join([f'\small{{{x.title()}}}' for x in names])