-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcategorizedRPContent.js
230 lines (229 loc) · 7.76 KB
/
categorizedRPContent.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
const researchPapers = {
"foundational_papers": [
{
title: "A Mathematical Theory of Communication",
url: "https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf"
},
{
title: "A Logical Calculus of the Ideas Immanent in Nervous Activity",
url: "https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf"
},
{
title: "Intelligent Machinery",
url: "https://ia801703.us.archive.org/23/items/turing1948/turing1948_text.pdf"
},
{
title: "Programming a Computer for Playing Chess",
url: "https://archive.computerhistory.org/projects/chess/related_materials/text/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf"
},
{
title: "Perceptron",
url: "https://bpb-us-e2.wpmucdn.com/websites.umass.edu/dist/a/27637/files/2016/03/rosenblatt-1957.pdf"
},
{
title: "A Symbolic Analysis of Relay and Switching Circuits",
url: "https://drive.google.com/file/d/1m3JwmCZqWg1IP607I5gbpsJDQBIDwcz9/view"
}
],
"neural_networks_and_deep_learning": [
{
title: "Learning representations by back-propagating errors",
url: "https://github.com/georgezoto/Convolutional-Neural-Networks/blob/master/Papers/1986%20Backpro%20Learning%20representations%20by%20back-propagating%20errors%20-%20Rumelhart,%20Hinton,%20Williams.pdf"
},
{
title: "Gradient-based learning applied to document recognition",
url: "https://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf"
},
{
title: "The Annotated Transformer",
url: "https://nlp.seas.harvard.edu/annotated-transformer/"
},
{
title: "ImageNet Classification with Deep CNNs",
url: "https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf"
},
{
title: "CS231n Convolutional Neural Networks for Visual Recognition",
url: "https://cs231n.github.io/"
},
{
title: "Deep Residual Learning for Image Recognition",
url: "https://arxiv.org/pdf/1512.03385"
},
{
title: "Identity Mappings in Deep Residual Networks",
url: "https://arxiv.org/pdf/1603.05027"
},
{
title: "Multi-Scale Context Aggregation by Dilated Convolutions",
url: "https://arxiv.org/pdf/1511.07122"
}
],
"language_models_and_nlp": [
{
title: "Attention Is All You Need",
url: "https://arxiv.org/pdf/1706.03762"
},
{
title: "Neural Networks and Neural Language Models",
url: "https://web.stanford.edu/~jurafsky/slp3/7.pdf"
},
{
title: "A Neural Probabilistic Language Model",
url: "https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf"
},
{
title: "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding",
url: "https://arxiv.org/pdf/1810.04805"
},
{
title: "The Llama 3 Herd of Models",
url: "https://arxiv.org/pdf/2407.21783"
},
{
title: "Scaling Laws for Neural LMs",
url: "https://arxiv.org/pdf/2001.08361"
}
],
"sequence_models": [
{
title: "The Unreasonable Effectiveness of RNNs",
url: "https://karpathy.github.io/2015/05/21/rnn-effectiveness/"
},
{
title: "Understanding LSTM Networks",
url: "https://colah.github.io/posts/2015-08-Understanding-LSTMs/"
},
{
title: "Sequence to Sequence Learning with Neural Networks",
url: "https://arxiv.org/pdf/1409.3215"
},
{
title: "Neural Machine Translation by Jointly Learning to Align and Translate",
url: "https://arxiv.org/pdf/1409.0473"
},
{
title: "Generating Sequences With Recurrent Neural Networks",
url: "https://arxiv.org/pdf/1308.0850"
},
{
title: "Recurrent Neural Network Regularization",
url: "https://arxiv.org/pdf/1409.2329"
},
{
title: "Order Matters: Sequence to sequence for sets",
url: "https://arxiv.org/pdf/1511.06391"
},
{
title: "Pointer Networks",
url: "https://arxiv.org/pdf/1506.03134"
},
{
title: "Relational RNNs",
url: "https://arxiv.org/pdf/1806.01822"
}
],
"machine_learning_theory": [
{
title: "Random Forests",
url: "https://link.springer.com/content/pdf/10.1023/a:1010933404324.pdf"
},
{
title: "Statistical Modeling: The Two Cultures",
url: "https://www2.math.uu.se/~thulin/mm/breiman.pdf"
},
{
title: "A Tutorial on Principal Component Analysis",
url: "https://arxiv.org/pdf/1404.1100"
},
{
title: "An overview of gradient descent optimization algorithms",
url: "https://arxiv.org/pdf/1609.04747"
},
{
title: "Keeping Neural Networks Simple by Minimizing the Description Length of the Weights",
url: "https://www.cs.toronto.edu/~hinton/absps/colt93.pdf"
},
{
title: "A Tutorial Introduction to the Minimum Description Length Principle",
url: "https://arxiv.org/pdf/math/0406077"
},
{
title: "Machine Super Intelligence",
url: "http://www.vetta.org/documents/Machine_Super_Intelligence.pdf"
},
{
title: "Kolmogorov Complexity and Algorithmic Randomness",
url: "https://www.lirmm.fr/~ashen/kolmbook-eng-scan.pdf"
}
],
"memory_and_attention": [
{
title: "Memory Networks",
url: "https://arxiv.org/pdf/1410.3916"
},
{
title: "Neural Turing Machines",
url: "https://arxiv.org/pdf/1410.5401"
},
{
title: "MemoryBank: Enhancing Large Language Models with Long-Term Memory",
url: "https://arxiv.org/pdf/2305.10250"
},
{
title: "Effective Approaches to Attention-based Neural Machine Translation",
url: "https://arxiv.org/pdf/1508.04025"
}
],
"specialized_applications": [
{
title: "Deep Speech 2: End-to-End Speech Recognition in English and Mandarin",
url: "https://arxiv.org/pdf/1512.02595"
},
{
title: "Self-Driving Cars: A Survey",
url: "https://arxiv.org/pdf/1901.04407"
},
{
title: "Neural Quantum Chemistry",
url: "https://arxiv.org/pdf/1704.01212"
},
{
title: "GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism",
url: "https://arxiv.org/pdf/1811.06965"
},
{
title: "A Simple NN Module for Relational Reasoning",
url: "https://arxiv.org/pdf/1706.01427"
}
],
"technical_resources": [
{
title: "Papers in 100 Lines of Code",
url: "https://github.com/MaximeVandegar/Papers-in-100-Lines-of-Code"
},
{
title: "A Mathematical Framework for Transformer Circuits",
url: "https://transformer-circuits.pub/2021/framework/index.html"
},
{
title: "The NumPy array: a structure for efficient numerical computation",
url: "https://arxiv.org/pdf/1102.1523"
}
],
"complexity_and_systems": [
{
title: "The First Law of Complexodynamics",
url: "https://scottaaronson.blog/?p=762"
},
{
title: "Quantifying the Rise and Fall of Complexity in Closed Systems: The Coffee Automaton",
url: "https://arxiv.org/pdf/1405.6903"
},
{
title: "Variational Lossy Autoencoder",
url: "https://arxiv.org/pdf/1611.02731"
}
]
};
export default researchPapers;