-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnll.sh
129 lines (113 loc) · 2.72 KB
/
nll.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#!/bin/bash
export CUDA_VISIBLE_DEVICES=0
python3 main_nll.py --batch_size 256 \
--learning_rate 0.8 \
--cosine \
--imratio 0.01 \
--dataset cifar10 \
--model resnet20 &
export CUDA_VISIBLE_DEVICES=1
python3 main_nll.py --batch_size 256 \
--learning_rate 0.8 \
--cosine \
--imratio 0.01 \
--dataset cifar10 \
--model densenet121 &
export CUDA_VISIBLE_DEVICES=2
python3 main_nll.py --batch_size 256 \
--learning_rate 0.8 \
--cosine \
--imratio 0.01 \
--dataset cifar100 \
--model resnet20 &
export CUDA_VISIBLE_DEVICES=3
python3 main_nll.py --batch_size 256 \
--learning_rate 0.8 \
--cosine \
--imratio 0.01 \
--dataset cifar100 \
--model densenet121 &
export CUDA_VISIBLE_DEVICES=4
python3 main_nll.py --batch_size 128 \
--learning_rate 0.8 \
--cosine \
--imratio 0.01 \
--dataset c2 \
--model resnet20 &
export CUDA_VISIBLE_DEVICES=5
python3 main_nll.py --batch_size 128 \
--learning_rate 0.8 \
--cosine \
--imratio 0.01 \
--dataset c2 \
--model densenet121 &
export CUDA_VISIBLE_DEVICES=6
python3 main_nll.py --batch_size 128 \
--learning_rate 0.8 \
--cosine \
--imratio 0.01 \
--dataset stl10 \
--model resnet20 &
export CUDA_VISIBLE_DEVICES=7
python3 main_nll.py --batch_size 128 \
--learning_rate 0.8 \
--cosine \
--imratio 0.01 \
--dataset stl10 \
--model densenet121 &
export CUDA_VISIBLE_DEVICES=0
python3 main_nll.py --batch_size 256 \
--learning_rate 0.8 \
--cosine \
--imratio 0.1 \
--dataset cifar10 \
--model resnet20 &
export CUDA_VISIBLE_DEVICES=1
python3 main_nll.py --batch_size 256 \
--learning_rate 0.8 \
--cosine \
--imratio 0.1 \
--dataset cifar10 \
--model densenet121 &
export CUDA_VISIBLE_DEVICES=2
python3 main_nll.py --batch_size 256 \
--learning_rate 0.8 \
--cosine \
--imratio 0.1 \
--dataset cifar100 \
--model resnet20 &
export CUDA_VISIBLE_DEVICES=3
python3 main_nll.py --batch_size 256 \
--learning_rate 0.8 \
--cosine \
--imratio 0.1 \
--dataset cifar100 \
--model densenet121 &
export CUDA_VISIBLE_DEVICES=4
python3 main_nll.py --batch_size 128 \
--learning_rate 0.8 \
--cosine \
--imratio 0.1 \
--dataset c2 \
--model resnet20 &
export CUDA_VISIBLE_DEVICES=5
python3 main_nll.py --batch_size 128 \
--learning_rate 0.8 \
--cosine \
--imratio 0.1 \
--dataset c2 \
--model densenet121 &
export CUDA_VISIBLE_DEVICES=6
python3 main_nll.py --batch_size 128 \
--learning_rate 0.8 \
--cosine \
--imratio 0.1 \
--dataset stl10 \
--model resnet20 &
export CUDA_VISIBLE_DEVICES=7
python3 main_nll.py --batch_size 128 \
--learning_rate 0.8 \
--cosine \
--imratio 0.1 \
--dataset stl10 \
--model densenet121 &