-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbrapaclust.m
264 lines (196 loc) · 7.42 KB
/
brapaclust.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
%% read
[data,id,~]=xlsread('L:\Results\Ishita\Log2abs0.5.xlsx');
prot = tblread('L:\Results\Ishita\Copy of Log2abs0.5 GO.txt','\t');
protcl=prot(:,1:12);
%% optimize find min variance
f = @(x,y) x.*exp(-x.^2-y.^2)+(x.^2+y.^2)/20;
ezsurfc(f,[-2,2])
fun = @(x) f(x(1),x(2));
x0 = [-.5; 0];
%options = optimoptions('fminunc','Algorithm','quasi-newton');
options.Display = 'iter';
[x, fval, exitflag, output] = fminunc(fun,x0,'Algorithm','quasi-newton')
cubic = @(x) x^3+x^2+x
cubic(10)+1
%% hyperplane
%f = @(x,y) exp(x.^2./y.^2)-exp(x.^2./y.^2)
n=3
%f = @(x,y) -abs(x^n.*y^n)
f = @(x,y) abs(x^n+y^n)+n^n
ezsurfc(f,[-10,10])
fx=@(x)f(x(1),x(2));
x0 = [1;1];
options = optimoptions('fminunc');
options.Display = 'iter';
[x, fval, exitflag, output] = fminunc(fx,x0)
%% cluster
protclremnan=knnimpute(protcl)
protclremnanzscore=zscore(protcl)
clustergram(protclremnanzscore)
, 'Cluster','column', 'Colormap', redbluecmap,'ImputeFun','knnimpute')
clustergram(log2(protcl), 'Colormap', redbluecmap,'ImputeFun','knnimpute')
[corrprot cpv]=corrcoef(prot,'rows','pairwise')
spy(cpv)
[corrprot cpv]=corrcoef(log2(prot),'rows','pairwise')
cgprop=clustergram(corrprot, 'Colormap', redgreencmap(256),'ImputeFun','knnimpute')%,'Distance', 'mahalanobis')
%% write correlation matrix
dlmwrite('pairwisecorrcoefnum.csv',corrprot)
dlmwrite('pairwisecorrcoefpvalue.csv',cpv)
%% compare pathways
clhm=dataset('XLSFile', 'L:\Elite\Aida\celllinecanonicalpathwayheatmap.xls');
mmhm=dataset('XLSFile', 'L:\Elite\Aida\MM20CanPathHeatMap.xls');
hm=join(clhm, mmhm,'Type','outer')
hmd=hmd(:, any(~isnan(hmd), 1)); % remove columns with all NaNs
hmd=hmd(any(~isnan(hmd), 2),:); % remove rows with all NaNs
[corrprot cpv]=corrcoef(hmd,'rows','pairwise')
cgprop=clustergram(corrprot, 'Colormap', redgreencmap(256),'ImputeFun','knnimpute')%,'Distance', 'mahalanobis')
cgprop=clustergram(hmd, 'Colormap', redgreencmap(256),'ImputeFun','knnimpute')%,'Distance', 'mahalanobis')
spy(cpv)
dlmwrite('pairwisecorrcoefnum.csv',corrprot)
dlmwrite('pairwisecorrcoefpvalue.csv',cpv)
%% ugly iterator
hmd=zeros(size(hm,1),size(hm,2));
for i = 1:size(hm,1)
for j = 1:size(hm,2)
hmd(i,j)=str2double(hm{i,j});
end
end
%% comp
%protimp=knnimpute(log2(prot'))
prot=protab(:,[181:6:361]);
prot(any(isnan(prot), 2),:)=[];
%[wcoeff,score,latent,tsquared,explained] = pca(prot','Rows','pairwise');
[wcoeff,score,latent,tsquared,explained] = pca(log2(prot'),'Rows','pairwise');
plot3(score(:,1),score(:,2),score(:,3),'.')
xlabel('1st Principal Component')
ylabel('2nd Principal Component')
zlabel('3rd Principal Component')
%gname
%% random playing with components
pareto(explained)
biplot(wcoeff(:,1:2),'scores',score(:,1:2));
%source http://www.mathworks.se/help/stats/feature-transformation.html#f75476
%% auto label plot
tags = num2str((1:size(pcom,1))','%d');
text(score(:,1),score(:,2),score(:,3),tags,'FontSize',8)
[st2,index] = sort(tsquared,'descend');
cumsum(dev./sum(dev) * 100)
plot(pcom(:,1),pcom(:,2),'r.')
tags = num2str((1:size(pcom,1))','%d');
text(pcom(:,1),pcom(:,2),tags)
text(score(:,1),score(:,2),tags)
xlabel('PC1');
ylabel('PC2');
title('PCA Scatter');
%% check IDs
upid=id(2:end,1);
size(unique(upid),1)
%% extract ratios
both=[30:3:99]
bod=data(:,both);
mor=[30 33 36 39 42 45 48 51 66 69 72 75 90 93 96 99 ]
eve=[54 57 60 63 78 81 84 87]
mod=data(:,mor);
evd=data(:,eve);
%% distribution
hist(log2(evd))
hist(log2(mod))
%% correlation
corrprot=corrcoef(log2(bod),'rows','pairwise')
corrprot=corrcoef((bod),'rows','pairwise')
%% compare
histfit(median(log2((evd(~isnan(evd)))),2))
histfit(median(log2((mod(~isnan(mod)))),2))
%%
load yeastdata
whos yeastvalues genes
%% time points
cnt=~isnan(prot);
[r c]=size(prot)
tp=zeros(r,c/4);
tc=0;
for i=1:4:c
tc=tc+1;
tp(:,tc)=sum(cnt(:,i:i+3),2);
end
hist(tp)
hist(prot)
histfit(prot(:,26))
%reshape(prot(~isnan(prot)),r,c)
%% cluster analysis
clustergram(prot(:,4:66), 'Cluster','column', 'Colormap', redbluecmap,'ImputeFun','knnimpute')
corrprot=corrcoef(prot,'rows','pairwise')
ccprop=clustergram(corrprot, 'Colormap', redgreencmap(256),'ImputeFun','knnimpute')%,'Distance', 'mahalanobis')
get(ccprop)
corrprot=corrcoef(prot','rows','pairwise')
ccprop=clustergram(corrprot, 'Colormap', redgreencmap(256),'ImputeFun','knnimpute')%,'Distance', 'mahalanobis')
spy(prot(:,2:25))
%% subgroup analysis
protsg=prot(:,[61:63,22:24,34:36,10:12,19:21]);
corrprot=corr(protsg,'rows','pairwise')
ccprop=clustergram(corrprot, 'Colormap', redgreencmap(256),'ImputeFun','knnimpute');
dpst = linkage(ccprop, 'ward');
csize=2;
dpsg = pdist(protsg', 'euclid');
dpst = linkage(dpsg, 'ward');
getid = cluster(dpst, 'maxclust',csize);
%% tags
cd = clusterdata(pcom(:,1:2),4);
gscatter(pcom(:,1),pcom(:,2),cd)
gname('name')
>>>>>>> 5307f70af61f5ac82ab8a44b805cae431deb83da
%% plot MM with MGUS
corr(log10(prot(:,1)),log10(prot(:,2)),'rows','pairwise')
plot(log10(prot(:,1)),log10(prot(:,2)),'b.')
%% find significant diffs
mavolcanoplot(prot(:,1), prot(:,2), mattest(prot(:,1), prot(:,2)),'LogTrans','True')
mavolcanoplot(proto(:,1), proto(:,2), mattest(proto(:,1), proto(:,2)),'LogTrans','True')
%% check rand vals
proto=randn(1000,1).*(2*pi)
proto=[proto 2*proto -1*proto sin(proto) cos(proto) sin(proto).*cos(proto)]
<<<<<<< HEAD
%% cluster analysis
corrprot=corrcoef(prot,'rows','pairwise')
corrprot=corrcoef(prot','rows','pairwise')
ccprop=clustergram(corrprot, 'Colormap', redgreencmap(256)) %,'ImputeFun',@('distance', 'mahalanobis')knnimpute)%,'Distance', 'mahalanobis')
get(ccprop)
=======
>>>>>>> 5307f70af61f5ac82ab8a44b805cae431deb83da
%% correlation plot
corrprot=corr(prot,'rows','pairwise')
HeatMap(corrprot,'Colormap', redgreencmap(256))
%% compare forward and reverse ratios against molecular weights
plot(protrev(:,15),protrev(:,20),'r.')
hold
plot(prot(:,15),1./prot(:,20),'b.')
hold
%% correlation
hist(protcomb(:,2),[100])
hist(1./protcomb(:,3),[100])
plot(protcomb(:,2),1./protcomb(:,3),'k.')
[rho val]=corrcoef(protcomb(:,2),1./protcomb(:,3),'rows','pairwise')
hist(protcomb(:,2)-1./protcomb(:,3),[100])
%% outliers
X = 1:1000; % Pseudo Time
Y = 5000 + randn(1000, 1); % Pseudo Data
Outliers = randi(1000, 10, 1); % Index of Outliers
Y(Outliers) = Y(Outliers) + randi(1000, 10, 1); % Pseudo Outliers
[YY,I,Y0,LB,UB] = hampel(X,Y);
plot(X, Y, 'b.'); hold on; % Original Data
plot(X, YY, 'r'); % Hampel Filtered Data
plot(X, Y0, 'b--'); % Nominal Data
plot(X, LB, 'r--'); % Lower Bounds on Hampel Filter
plot(X, UB, 'r--'); % Upper Bounds on Hampel Filter
plot(X(I), Y(I), 'ks'); % Identified Outlie
%% compare maxquant with proteome discoverer
mqpd=[0.825 0.772 0.774 0.306 0.252 0.302 1.672 1.729 1.779 0.977 0.999 1.023 0.778 0.709 0.788 0.972 0.980 0.928 0.385 0.369 0.383 0.970 0.963 0.998 ;
0.70866 0.71609 0.74699 0.37127 0.3181 0.323 1.2621 1.1789 1.258 0.60449 0.68233 0.84355 0.73261 0.73799 0.76839 0.8078 0.86479 0.83016 0.45036 0.45852 0.49714 0.73496 0.72891 0.71174]
[hyp pval ci stats]=ttest(mqpd(1,:),mqpd(2,:))
plot(mqpd(1,:),mqpd(2,:),'b.')
comm -12 <(sort pd.txt) <(sort mq.txt) | wc
%% fit dist
pd = fitdist(kam,'Normal')
pd = fitdist(kam,'Kernel','Kernel','epanechnikov')
x_values = 0:0.01:50;
pdf = pdf(pd,x_values);
plot(x_values,pdf,'LineWidth',2)