-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbinclasssat.m
72 lines (67 loc) · 2.46 KB
/
binclasssat.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
%% data
x=[220.22 223.54 1.00
223.84 237.44 1.00
258.32 287.93 0.00
241.53 267.49 1.00
241.79 281.38 1.00
253.21 280.85 1.00
256.95 292.47 0.00
209.14 207.97 1.00
251.28 290.98 0.00
246.40 283.78 1.00
240.18 290.06 0.00
239.29 274.88 1.00
239.76 284.66 0.00
230.33 251.00 1.00
227.93 236.58 1.00
244.40 277.28 1.00
254.29 287.09 0.00
249.64 287.16 0.00
249.42 278.21 1.00
234.42 260.52 1.00
244.10 290.09 0.00
254.66 297.62 0.00
255.67 283.95 0.00
258.01 280.69 1.00
235.12 271.74 1.00]
%% check
plot(x(:,1),x(:,2),'r.')
plot3(x(:,1),x(:,2),x(:,3),'r.')
plot(x(x(:,3)==0,1),x(x(:,3)==0,2),'r.')
hold
plot(x(x(:,1)==0,1),x(x(:,3)==1,2),'b.')
plot(x(x(:,3)==0,1),x(x(:,3)==1,2),'b.')
plot(x(x(:,3)==1,1),x(x(:,3)==1,2),'b.')
plot(x(x(:,3)==0,1),x(x(:,3)==0,2),'r.')
[b,dev,stats] = glmfit(x(:,1:2),x(:,3),'binomial','logit')
svmStruct = svmtrain(train,class,'showplot',true,'KERNEL_FUNCTION','polynomial','POLYORDER',2);
svmStruct = svmtrain(x(:,1:2),x(:,3),'showplot',true,'KERNEL_FUNCTION','polynomial','POLYORDER',2);
svmStruct = svmtrain(x(:,1:2),x(:,3),'showplot');
svmStruct = svmtrain(x(:,1:2),x(:,3),'showplot','true');
svmStruct = svmtrain(x(:,2),x(:,3),'showplot','true');
svmStruct = svmtrain(x(:,2:2),x(:,3),'showplot','true');
svmStruct = svmtrain(x(:,2:2),x(:,3));
svmStruct = svmtrain(x(:,2),x(:,3));
help svmStruct
help svmtrain
svmStruct = svmtrain(x(:,2),x(:,3));
help svmtrain
C = svmclassify(svmStruct,x(:,2),'showplot',true);
C = svmclassify(svmStruct,x(:,2))
plot(C,x(:3))
plot(C(:),x(:3))
plot(C(:),x(:,3))
plot(C(:),x(:,3),'b.')
sum(C(:)-x(:,3))
svmStruct = svmtrain(x(:,2),x(:,3))
svmStruct = svmtrain(x(:,1:2),x(:,3),'showplot',true,'KERNEL_FUNCTION','polynomial','POLYORDER',1);
svmStruct = svmtrain(x(:,1:2),x(:,3),'showplot',true,'KERNEL_FUNCTION','polynomial','POLYORDER',4);
svmStruct = svmtrain(x(:,1:2),x(:,3),'showplot',true,'KERNEL_FUNCTION','polynomial','POLYORDER',3);
C = svmclassify(svmStruct,x(:,1:2),'showplot',true)
C = svmclassify(svmStruct,x(:,1:2),'showplot','true')
sum(C(:)-x(:,3))
svmStruct = svmtrain(x(:,1:2),x(:,3),'showplot',true,'KERNEL_FUNCTION','polynomial','POLYORDER',6);
svmStruct = svmtrain(x(:,1:2),x(:,3),'showplot',true,'KERNEL_FUNCTION','polynomial','POLYORDER',1);
%% class
class = classify(x(:,1:2),x(:,1:2),x(:,3),'mahalanobis')
sum(class(:)-x(:,3))