-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathdemo.m
146 lines (113 loc) · 3.78 KB
/
demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
% This demo shows how the customised layers work on 3DMM as STN.
% It is a simple practical based on gradient descent that demonstrates the
% localiser part of the network:
% Repeat until converge( x = x - stepsize*grad(f(x))).
%
% The localiser structure is as follows:
%
% Theta
% |
% Split r logs t
% a| R = r2R(r) s = exp(logs) idx
% Model -> Rotate -> Proj -> Scale -> Translate -> Select -> Euclidean Loss
%
% Test data:
% Images: 224 x 224 x 3 x nbatch
% Labels: 1 x 2 x 21 x nbatch
%
% Model:
% Check the GitHub page to see how to create the resampled expression
% model.
%
% Dec 2017 || https://github.com/anilbas/3DMMasSTN
%% Load model, data and landmarks:
addpath(genpath(pwd));
model = load('model.mat');
load('util/demodata.mat');
idx = readLandmarks('util/landmarks/Landmarks21_112.anl');
nbatch = size(Images,4);
Vis = ones(1,1,21,nbatch, 'single');
% Test - Display
% id=4;
% im = Images(:,:,:,id)./255;
% xp = squeeze(Labels(1,:,:,id));
% vis = Vis(:,id);
% figure; imshow(im); hold on;
% plot(xp(1,:),225-xp(2,:),'xb');
% text(double(xp(1,:)),225-double(xp(2,:)),cellstr(num2str([1:length(xp)]')),'Color','r');
%% Gradient Descent
% Define Initial values for X (6 pose and 10 shape params): 1 x 1 x 16 x nbatch
X = randn(1,1,16,nbatch,'single');
X(:,:,1:3,:)=0;
X(:,:,4:5,:)=112;
X(:,:,6,:)=1;
figure;
for i=1:nbatch
subplot(nbatch,1,i); imshow(Images(:,:,:,i)./255); hold on;
end
% Step size
epsilon = 1e-6;
% Loop until the loss difference is smaller than 1
diffloss=Inf;
loss=Inf;
while ~(diffloss<1)
% Forward pass
[alpha,r,t,logs] = vl_nnsplit(X);
X1 = vl_nnmodel(alpha,model);
R = vl_nnr2R(r);
X2 = vl_nnrotate3D(X1,R);
X3 = vl_nnprojection(X2);
s = vl_nnlogScale2Scale(logs);
X4 = vl_nnscale2D(X3,s);
X5 = vl_nntranslate2D(X4,t);
X6 = vl_nnselection(X5,idx);
% Forward pass-end
% Loss
preloss=loss;
loss = vl_nneuclideanloss(X6,Labels,Vis);
dx6 = vl_nneuclideanloss(X6,Labels,Vis,1);
diffloss = norm(loss-preloss);
% Loss-end
% Display
delete(findobj('type','line'));
for i=1:nbatch
xp = squeeze(X6(1,:,:,i));
gt = squeeze(Labels(1,:,:,i));
subplot(nbatch,1,i);
plot( xp(1,:), 225-xp(2,:), 'r.', gt(1,:), 225-gt(2,:), 'go'); axis equal
end
drawnow
% Display-end
% Backward pass
dx5 = vl_nnselection(X5,idx,dx6);
[dx4,dt] = vl_nntranslate2D(X4,t,dx5);
[dx3,ds] = vl_nnscale2D(X3,s,dx4);
dlogs = vl_nnlogScale2Scale(logs,ds);
dx2 = vl_nnprojection(X2,dx3);
[dx1,dR] = vl_nnrotate3D(X1,R,dx2);
dr = vl_nnr2R(r,dR);
dalpha = vl_nnmodel(alpha,model,dx1);
% Increase the learning rate of the shape parameters
dalpha = dalpha + 100*dalpha;
dx = vl_nnsplit(X,dalpha,dr,dt,dlogs);
% Backward pass-end
% Gradient descent
X = X - epsilon*dx;
disp(num2str(diffloss));
end
%% Display the sampled images using the final values of the localiser (only forward)
grid = vl_nngrid(X5);
sampler = vl_nnbilinearsampler(Images,grid);
vismask = vl_nnvisibilitymask(X2,model.faces);
vissampler = vl_nnvisibility(sampler,vismask);
figure;
for i=1:nbatch
subplot(nbatch,5,5*i-4); imshow(Images(:,:,:,i)./255);
subplot(nbatch,5,5*i-3);
vertices = squeeze(X5(1,:,:,i));
imshow(Images(:,:,:,i)./255); hold on;
plot(vertices(1,:),size(Images(:,:,:,i),2)+1 -vertices(2,:),'.');
subplot(nbatch,5,5*i-2); imshow(sampler(:,:,:,i)./255);
subplot(nbatch,5,5*i-1); imshow(vismask(:,:,:,i));
subplot(nbatch,5,5*i); imshow(vissampler(:,:,:,i)./255);
end