-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperceptron.py
243 lines (208 loc) · 6.95 KB
/
perceptron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# perceptron algorithm
from collections import Counter
from collections import defaultdict
import os
import itertools
import random
import operator
train_data = ''
vocab = []
train_data_list = []
validation_data_list = []
vocab_size = 0
def main():
split_data()
dictionary = count_word()
vocab_size = build_vocab(dictionary)
vector_set = create_vector_set(train_data_list, 4000,vocab_size)
print 'vocab_size:', vocab_size
weights = perceptron_train(vector_set, 4000, vocab_size)
validate_set = create_vector_set(validation_data_list, 1000,vocab_size)
perceptron_test(weights, validate_set, vocab_size)
perceptron_test(weights, vector_set, vocab_size)
avg_weight = average_perceptron(vector_set,4000,3, vocab_size)
perceptron_test(avg_weight, validate_set, vocab_size)
def split_data():
with open(os.path.expanduser("~/Desktop/ps1_data/spam_train.txt")) as f:
for line in itertools.islice(f, 0, 4000):
#train_data = train_data +line
train_data_list.append(line)
with open(os.path.expanduser("~/Desktop/ps1_data/spam_train.txt")) as f:
for line in itertools.islice(f, 4000, None):
validation_data_list.append(line)
#avoid counting words in the same email
def count_word():
temp_word = ''
d = defaultdict(int)
for index in range(len(train_data_list)):
currentEmail = train_data_list[index]
for word in currentEmail.split():
if word not in d:
d[word]+=1
temp_word = temp_word+ word + ' '
else:
if word not in temp_word.split():
d[word]+=1
temp_word = temp_word + word + ' '
temp_word = ''
return d
print len(d)
#ignore words that appear in fewer than 30 emails, 0 and 1
def build_vocab(d):
for word in d:
if d[word] >= 30 and word != '1' and word != '0':
if word not in vocab:
vocab.append(word)
vocab_size = len(vocab)
return vocab_size
print 'number of words in vocabulary', vocab_size
#organize training set in this format[ (1,0,0,...1,0) , 1] first term is vector, second term is true label
def create_vector_set(train_data_list, email_num, vocab_size):
matrix = [[0 for y in range(vocab_size)] for x in range(email_num)]
for x in range(email_num):
for y in range(vocab_size):
if vocab[y] in train_data_list[x]:
matrix[x][y] = 1
else:
matrix[x][y] = 0
#print matrix
training_set = [[0 for c in range(2)] for r in range(email_num)]
for r in range(email_num):
training_set[r][0] = matrix[r]
if int(train_data_list[r][0])== 0:
training_set[r][1] = -1
else:
training_set[r][1] = int(train_data_list[r][0]) # retrive true label at the beginning of each email
return training_set
def perceptron_train(set, email_num,vocab_size):
iter, mistakes, calculated_label = 0, 0, 0
weights = []
for i in range(vocab_size): #initialize to 0
weights.append(0)
#print weights
while True:
temp_mistakes = 0
for k in range(email_num):
temp_vector = set[k][0]
activation = 0
for j in range(vocab_size):
activation = activation + (weights[j]*temp_vector[j])
if activation >= 0:
calculated_label = 1
else:
calculated_label = -1
if calculated_label != set[k][1]:
temp_mistakes = temp_mistakes+1
mistakes = mistakes+1
for r in range(vocab_size):
weights[r]= weights[r] + (set[k][1]*temp_vector[r])
iter= iter+1
#print weights
print 'temp_mistakes', temp_mistakes
if temp_mistakes == 0:
break
print 'iters:',iter,'mistakes:',mistakes
return weights
def perceptron_test(weights, set, vocab_size):
activation, calculated_label, mistakes = 0, 0, 0
for j in range(len(set)):
activation = 0
temp_vector = set[j][0]
for i in range(vocab_size):
activation = activation + (weights[i]*temp_vector[i])
if activation >= 0:
calculated_label = 1
else:
calculated_label = -1
if calculated_label != set[j][1]:
mistakes= mistakes+1
error = mistakes/float(len(set))
print 'Error:', error, 'Mistakes:', mistakes, 'len(set):', len(set)
def average_perceptron(set, email_num, max_iter, vocab_size):
iter, mistakes, activation, calculated_label = 0, 0, 0, 0
weights = []
avg_weight = []
for i in range(vocab_size): #initialize to all 0s
weights.append(0)
avg_weight.append(0)
for k in range(max_iter):
for g in range(email_num):
temp_vector = set[g][0]
activation = 0
for j in range(vocab_size):
activation = activation + (weights[j]*temp_vector[j])
if activation >= 0:
calculated_label = 1
else:
calculated_label = -1
if calculated_label != set[g][1]:
mistakes = mistakes+1
for r in range(vocab_size):
weights[r]= weights[r]+(set[g][1]*temp_vector[r])
for z in range(len(weights)):
avg_weight[z]= avg_weight[z]+weights[z]
for h in range(len(weights)):
avg_weight[h]= avg_weight[h]/max_iter
print 'iters:', iter,'mistakes:', mistakes
return avg_weight
def norm(vector):
norm = 0
for i in range(len(vector)):
norm = norm+ vector[i]**2
norm = norm**0.5
return norm
def pegasos_svm_train(data, lamda, vocab_size):
iter, mistakes, t = 0, 0, 0
vector_length = 0
weights = []
u = []
for l in range(vocab_size): #initialize to 0
weights.append(0)
u.append(0)
for i in range(20):
for j in range(len(data)):
t = t+1
eta = 1/(t*lamda)
temp_vector = data[j][0] # j-th email
dot_prod = 0
dot_prod = dot_product(weights, temp_vector)
if data[j][1]*dot_prod < 1: #line5
for k in range(vocab_size):
weights[k]= (1 - 1/t)*weights[k]
u[k]= weights[k]+(eta*temp_vector[k]*data[j][1])
else: #line7
for s in range(vocab_size):
u[s]= (1 - 1/t)*weights[s]
vector_length = norm(u)
N = (1/(lamda**0.5))/vector_length
if N < 1:
for y in range(vocab_size):
weights[y] = N * u[y]
else:
for x in range(vocab_size):
weights[x] = u[x]
print 'iter:', i+1
svm_obj = 0
for h in range(len(data)):
temp_num = 1 - data[h][1]*dot_product(weights, data[h][0])
if temp_num > 1:
svm_obj = svm_obj+temp_num
else:
svm_obj = svm_obj
svm_obj = svm_obj/len(data)+(lamda/2)*norm(weights)**2
print 'svm_obj', svm_obj
return weights
def find_svm(data, w, vocab_size):
prod = 0
length = norm(w)
r = 1/length
print r
for j in range(len(data)):
temp_vector = data[j][0]
for k in range(vocab_size):
prod = prod + (w[k]*temp_vector[k])
if prod <= 1.01 and prod >= -1.01:
print 'SVM:', j+1
def dot_product(vector1, vector2):
return sum(map( operator.mul, vector1, vector2))
main()