-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflowboard.py
197 lines (158 loc) · 5.96 KB
/
flowboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python
import pickle
from graph import GraphOntoRectangularGrid
from flowsolver import FlowPuzzle, FlowSolver
class FlowBoard(object):
def __init__(self, size=None):
self._size = size or 7
self._endpoints = {} # key: list (length 1 or 2) of 2-tuples
self._bridges = set() # 2-tuples
self._blockages = set() # 2-tuples
def saveFile(self, filepath):
pickle.dump(self, open(filepath, 'wb'))
@staticmethod
def parseFile(filepath):
try:
loadboard = pickle.load(open(filepath, 'rb'))
except (FileNotFoundError, pickle.UnpicklingError):
return None
if not isinstance(loadboard, FlowBoard):
return None
board = FlowBoard(loadboard.size)
board.__dict__.update(loadboard.__dict__)
return board
@property
def size(self):
return self._size
@property
def endpoints(self):
for k, l in self._endpoints.items():
for cell in l:
yield cell, k
@property
def endpointPairs(self):
for k, l in self._endpoints.items():
assert self.hasCompleteEndpoints(k)
yield k, tuple(l)
@property
def bridges(self):
return iter(self._bridges)
@property
def blockages(self):
return iter(self._blockages)
def isEmpty(self):
return not (self._endpoints or self._bridges or self._blockages)
def isValid(self):
if not self._endpoints:
return False
if not all(self.hasCompleteEndpoints(k) for k in self._endpoints):
return False
if not all(self.bridgeValidAt(cell) for cell in self._bridges):
return False
if not all(self.blockageValidAt(cell) for cell in self._blockages):
return False
if self._bridges and len(self._endpoints) < 2:
return False
return True
def hasCompleteEndpoints(self, key):
return key in self._endpoints and len(self._endpoints[key]) == 2
def nextEndpointDrop(self, key):
if key in self._endpoints and len(self._endpoints[key]) == 2:
return self._endpoints[key][0]
return None
def setEndpoint(self, cell, key):
self.clear(cell)
l = self._endpoints[key] if key in self._endpoints else []
l.append(cell)
if len(l) > 2:
l = l[-2:]
self._endpoints[key] = l
def endpointKeyAt(self, cell):
assert self._includesCell(cell)
for k, l in self._endpoints.items():
if cell in l:
return k
return None
def bridgeValidAt(self, cell):
return len(self._adjacentUnblockedCells(cell)) == 4
def setBridge(self, cell):
assert self.bridgeValidAt(cell)
self.clear(cell)
self._bridges.add(cell)
def hasBridgeAt(self, cell):
return cell in self._bridges
def blockageValidAt(self, cell):
return not self._bridges.intersection(self._adjacentCells(cell))
def setBlockage(self, cell):
assert self.blockageValidAt(cell)
self.clear(cell)
self._blockages.add(cell)
def hasBlockageAt(self, cell):
return cell in self._blockages
def isClear(self, cell):
if cell in self._bridges or cell in self._blockages:
return False
return not any(cell in cells for cells in self._endpoints.values())
def clear(self, cell):
assert self._includesCell(cell)
for k, l in self._endpoints.items():
if cell in l:
l.remove(cell)
if not l:
del self._endpoints[k]
break
self._bridges.discard(cell)
self._blockages.discard(cell)
def getPuzzle(self):
"""
Return (FlowPuzzle, dict)
The dictionary is a mapping of vertex to cell coordinates.
"""
gridgraph = GraphOntoRectangularGrid(self.size)
endpointPairs = []
for _, xypair in self.endpointPairs:
vpair = tuple(map(gridgraph.singleVertexAt, xypair))
endpointPairs.append(vpair)
for xy in self.blockages:
gridgraph.removeVertexAt(xy)
exclusiveSets = []
for xy in self.bridges:
x_adj, y_adj = gridgraph.orthogonalAdjacencies(xy)
assert len(x_adj) == 2 and len(y_adj) == 2
gridgraph.removeVertexAt(xy)
xpass = gridgraph.pushVertex(xy)
gridgraph.addEdge(x_adj.pop(), xpass)
gridgraph.addEdge(x_adj.pop(), xpass)
ypass = gridgraph.pushVertex(xy)
gridgraph.addEdge(y_adj.pop(), ypass)
gridgraph.addEdge(y_adj.pop(), ypass)
exclusiveSets.append({xpass, ypass})
return (FlowPuzzle(gridgraph.graph, endpointPairs, exclusiveSets),
gridgraph.getLocationMap())
def _includesCell(self, cell):
return 0 <= cell[0] < self.size and 0 <= cell[1] < self.size
def _adjacentUnblockedCells(self, cell):
return set(self._adjacentCells(cell)) - self._blockages
def _adjacentCells(self, cell):
if cell[0] > 0:
yield cell[0] - 1, cell[1]
if cell[0] < self._size - 1:
yield cell[0] + 1, cell[1]
if cell[1] > 0:
yield cell[0], cell[1] - 1
if cell[1] < self._size - 1:
yield cell[0], cell[1] + 1
class FlowBoardSolver(FlowSolver):
def __init__(self, board):
assert board.isValid()
puzzle, self._cellmap = board.getPuzzle()
super(FlowBoardSolver, self).__init__(puzzle)
self._vertexKey = {}
for v1, v2 in puzzle.endpointPairs:
k = board.endpointKeyAt(self._cellmap[v1])
assert board.endpointKeyAt(self._cellmap[v2]) == k
self._vertexKey[v1] = k
self._vertexKey[v2] = k
def getFlows(self):
for vflow in super(FlowBoardSolver, self).getFlows():
yield self._vertexKey[vflow[0]], map(self._cellmap.get, vflow)