-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathcp_als.m
207 lines (176 loc) · 6.46 KB
/
cp_als.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
function [P,Uinit,output] = cp_als(X,R,varargin)
%CP_ALS Compute a CP decomposition of any type of tensor.
%
% P = CP_ALS(X,R) computes an estimate of the best rank-R
% CP model of a tensor X using an alternating least-squares
% algorithm. The input X can be a tensor, sptensor, ktensor, or
% ttensor. The result P is a ktensor.
%
% P = CP_ALS(X,R,'param',value,...) specifies optional parameters and
% values. Valid parameters and their default values are:
% 'tol' - Tolerance on difference in fit {1.0e-4}
% 'maxiters' - Maximum number of iterations {50}
% 'dimorder' - Order to loop through dimensions {1:ndims(A)}
% 'init' - Initial guess [{'random'}|'nvecs'|cell array]
% 'printitn' - Print fit every n iterations; 0 for no printing {1}
%
% [P,U0] = CP_ALS(...) also returns the initial guess.
%
% [P,U0,out] = CP_ALS(...) also returns additional output that contains
% the input parameters.
%
% Note: The "fit" is defined as 1 - norm(X-full(P))/norm(X) and is
% loosely the proportion of the data described by the CP model, i.e., a
% fit of 1 is perfect.
%
% NOTE: Updated in various minor ways per work of Phan Anh Huy. See Anh
% Huy Phan, Petr Tichavský, Andrzej Cichocki, On Fast Computation of
% Gradients for CANDECOMP/PARAFAC Algorithms, arXiv:1204.1586, 2012.
%
% Examples:
% X = sptenrand([5 4 3], 10);
% P = cp_als(X,2);
% P = cp_als(X,2,'dimorder',[3 2 1]);
% P = cp_als(X,2,'dimorder',[3 2 1],'init','nvecs');
% U0 = {rand(5,2),rand(4,2),[]}; %<-- Initial guess for factors of P
% [P,U0,out] = cp_als(X,2,'dimorder',[3 2 1],'init',U0);
% P = cp_als(X,2,out.params); %<-- Same params as previous run
%
% See also KTENSOR, TENSOR, SPTENSOR, TTENSOR.
%
%MATLAB Tensor Toolbox.
%Copyright 2015, Sandia Corporation.
% This is the MATLAB Tensor Toolbox by T. Kolda, B. Bader, and others.
% http://www.sandia.gov/~tgkolda/TensorToolbox.
% Copyright (2015) Sandia Corporation. Under the terms of Contract
% DE-AC04-94AL85000, there is a non-exclusive license for use of this
% work by or on behalf of the U.S. Government. Export of this data may
% require a license from the United States Government.
% The full license terms can be found in the file LICENSE.txt
%% Extract number of dimensions and norm of X.
N = ndims(X);
normX = norm(X);
%% Set algorithm parameters from input or by using defaults
params = inputParser;
params.addParamValue('tol',1e-4,@isscalar);
params.addParamValue('maxiters',50,@(x) isscalar(x) & x > 0);
params.addParamValue('dimorder',1:N,@(x) isequal(sort(x),1:N));
params.addParamValue('init', 'random', @(x) (iscell(x) || ismember(x,{'random','nvecs'})));
params.addParamValue('printitn',1,@isscalar);
params.parse(varargin{:});
%% Copy from params object
fitchangetol = params.Results.tol;
maxiters = params.Results.maxiters;
dimorder = params.Results.dimorder;
init = params.Results.init;
printitn = params.Results.printitn;
%% Error checking
%% Set up and error checking on initial guess for U.
if iscell(init)
Uinit = init;
if numel(Uinit) ~= N
error('OPTS.init does not have %d cells',N);
end
for n = dimorder(2:end);
if ~isequal(size(Uinit{n}),[size(X,n) R])
error('OPTS.init{%d} is the wrong size',n);
end
end
else
% Observe that we don't need to calculate an initial guess for the
% first index in dimorder because that will be solved for in the first
% inner iteration.
if strcmp(init,'random')
Uinit = cell(N,1);
for n = dimorder(2:end)
Uinit{n} = rand(size(X,n),R);
end
elseif strcmp(init,'nvecs') || strcmp(init,'eigs')
Uinit = cell(N,1);
for n = dimorder(2:end)
Uinit{n} = nvecs(X,n,R);
end
else
error('The selected initialization method is not supported');
end
end
%% Set up for iterations - initializing U and the fit.
U = Uinit;
fit = 0;
if printitn>0
fprintf('\nCP_ALS:\n');
end
%% Main Loop: Iterate until convergence
if (isa(X,'sptensor') || isa(X,'tensor')) && (exist('cpals_core','file') == 3)
%fprintf('Using C++ code\n');
[lambda,U] = cpals_core(X, Uinit, fitchangetol, maxiters, dimorder);
P = ktensor(lambda,U);
else
UtU = zeros(R,R,N);
for n = 1:N
if ~isempty(U{n})
UtU(:,:,n) = U{n}'*U{n};
end
end
for iter = 1:maxiters
fitold = fit;
% Iterate over all N modes of the tensor
for n = dimorder(1:end)
% Calculate Unew = X_(n) * khatrirao(all U except n, 'r').
Unew = mttkrp(X,U,n);
% Compute the matrix of coefficients for linear system
Y = prod(UtU(:,:,[1:n-1 n+1:N]),3);
Unew = Unew / Y;
if issparse(Unew)
Unew = full(Unew); % for the case R=1
end
% Normalize each vector to prevent singularities in coefmatrix
if iter == 1
lambda = sqrt(sum(Unew.^2,1))'; %2-norm
else
lambda = max( max(abs(Unew),[],1), 1 )'; %max-norm
end
Unew = bsxfun(@rdivide, Unew, lambda');
U{n} = Unew;
UtU(:,:,n) = U{n}'*U{n};
end
P = ktensor(lambda,U);
if normX == 0
fit = norm(P)^2 - 2 * innerprod(X,P);
else
normresidual = sqrt( normX^2 + norm(P)^2 - 2 * innerprod(X,P) );
fit = 1 - (normresidual / normX); %fraction explained by model
end
fitchange = abs(fitold - fit);
% Check for convergence
if (iter > 1) && (fitchange < fitchangetol)
flag = 0;
else
flag = 1;
end
if (mod(iter,printitn)==0) || ((printitn>0) && (flag==0))
fprintf(' Iter %2d: f = %e f-delta = %7.1e\n', iter, fit, fitchange);
end
% Check for convergence
if (flag == 0)
break;
end
end
end
%% Clean up final result
% Arrange the final tensor so that the columns are normalized.
P = arrange(P);
% Fix the signs
P = fixsigns(P);
if printitn>0
if normX == 0
fit = norm(P)^2 - 2 * innerprod(X,P);
else
normresidual = sqrt( normX^2 + norm(P)^2 - 2 * innerprod(X,P) );
fit = 1 - (normresidual / normX); %fraction explained by model
end
fprintf(' Final f = %e \n', fit);
end
output = struct;
output.params = params.Results;
output.iters = iter;