-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrede_multicamada.py
65 lines (49 loc) · 1.78 KB
/
rede_multicamada.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# -*- coding: utf-8 -*-
"""
Created on Mon Nov 13 13:31:19 2017
@author: andre.timm
"""
import numpy as np
# Função de ativação
def sigmoid(soma):
return 1 / (1 + np.exp(-soma))
def sigmoidDerivada(sig):
return sig * (1 - sig)
#a = sigmoid(50)
entradas = np.array([[0, 0],
[0, 1],
[1, 0],
[1, 1]])
saidas = np.array([[0],
[1],
[1],
[0]])
#pesos0 = np.array([[-0.424, -0.740, -0.961],
# [0.358, -0.577, -0.469]])
#pesos1 = np.array([[-0.017], [-0.893], [0.148]])
pesos0 = 2 * np.random.random((2,3)) - 1
pesos1 = 2 * np.random.random((3,2)) - 1
epocas = 10000
momento = 1
taxaAprendizagem = 0.9
for j in range(epocas):
camadaEntrada = entradas
somaSinapse0 = np.dot(camadaEntrada, pesos0)
camadaOculta = sigmoid(somaSinapse0)
somaSinapse1 = np.dot(camadaOculta, pesos1)
camadaSaida = sigmoid(somaSinapse1)
erroCamadaSaida = saidas - camadaSaida
mediaAbsoluta = np.mean(np.abs(erroCamadaSaida))
print("Erro : " + str(mediaAbsoluta))
derivadaSaida = sigmoidDerivada(camadaSaida)
deltaSaida = erroCamadaSaida * derivadaSaida
pesos1Transposta = pesos1.T
deltaSaidaXPeso = deltaSaida.dot(pesos1Transposta)
deltaCamadaOculta = deltaSaidaXPeso * sigmoidDerivada(camadaOculta)
camadaOcultaTransposta = camadaOculta.T
pesosNovo1 = camadaOcultaTransposta.dot(deltaSaida)
pesos1 = (pesos1 * momento) + (pesosNovo1 * taxaAprendizagem)
camadaEntradaTransposta = camadaEntrada.T
pesosNovo0 = camadaEntradaTransposta.dot(deltaCamadaOculta)
pesos0 =(pesos0 * momento) + (pesosNovo0 * taxaAprendizagem)
print("Taxa de acerto : " + str((1 - mediaAbsoluta) * 100) + "%")