forked from RyanZotti/Self-Driving-Car
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_glm.py
117 lines (89 loc) · 4.72 KB
/
train_glm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import tensorflow as tf
import numpy as np
import random
import os
from util import mkdir_tfboard_run_dir,mkdir,shell_command
input_file_path = '/Users/ryanzotti/Documents/repos/Self_Driving_RC_Car/final_processed_data_3_channels.npz'
npzfile = np.load(input_file_path)
# training data
train_predictors = npzfile['train_predictors']
train_targets = npzfile['train_targets']
# validation/test data
validation_predictors = npzfile['validation_predictors']
validation_targets = npzfile['validation_targets']
sess = tf.InteractiveSession(config=tf.ConfigProto())
def shuffle_dataset(predictors, targets):
record_count = predictors.shape[0]
shuffle_index = np.arange(record_count)
np.random.shuffle(shuffle_index)
predictors = predictors[shuffle_index]
targets = targets[shuffle_index]
return predictors, targets
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
x = tf.placeholder(tf.float32, shape=[None, 240, 320, 3])
y_ = tf.placeholder(tf.float32, shape=[None, 3])
x_shaped = tf.reshape(x, [-1, 240 * 320 * 3])
W = tf.Variable(tf.zeros([240 * 320 * 3, 3]))
b = tf.Variable(tf.zeros([3]))
y = tf.nn.softmax(tf.matmul(x_shaped, W) + b)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# To view graph: tensorboard --logdir=/Users/ryanzotti/Documents/repos/Self_Driving_RC_Car/tf_visual_data/runs/
tf.scalar_summary('accuracy', accuracy)
merged = tf.merge_all_summaries()
tfboard_basedir = '/Users/ryanzotti/Documents/repos/Self_Driving_RC_Car/tf_visual_data/runs/'
tfboard_run_dir = mkdir_tfboard_run_dir(tfboard_basedir)
train_dir = mkdir(tfboard_run_dir+"/trn/glm/")
validation_dir = mkdir(tfboard_run_dir+"/vld/glm/")
# Archive this script to document model design in event of good results that need to be replicated
model_file_path = os.path.dirname(os.path.realpath(__file__))+'/'+os.path.basename(__file__)
shell_command('cp {model_file} {archive_path}'.format(model_file=model_file_path,archive_path=tfboard_run_dir+'/'))
train_writer = tf.train.SummaryWriter(train_dir,sess.graph)
validation_writer = tf.train.SummaryWriter(validation_dir,sess.graph)
sess.run(tf.initialize_all_variables())
batch_index = 0
batches_per_epoch = (train_predictors.shape[0] - train_predictors.shape[0] % 50)/50
for i in range(1000):
# Shuffle in the very beginning and after each epoch
if batch_index % batches_per_epoch == 0:
train_predictors, train_targets = shuffle_dataset(train_predictors, train_targets)
batch_index = 0
batch_index += 1
data_index = batch_index * 50
predictors = train_predictors[data_index:data_index+50]
target = train_targets[data_index:data_index+50]
if i%100 == 0:
# Not sure what these two lines do
run_opts = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_opts_metadata = tf.RunMetadata()
train_summary, train_accuracy = sess.run([merged, accuracy],
feed_dict={x: predictors, y_: target},
options=run_opts,
run_metadata=run_opts_metadata)
train_writer.add_run_metadata(run_opts_metadata, 'step%03d' % i)
train_writer.add_summary(train_summary, i)
validation_summary, validation_accuracy = sess.run([merged, accuracy],
feed_dict={x: validation_predictors[:1000], y_: validation_targets[:1000]},
options=run_opts,
run_metadata=run_opts_metadata)
validation_writer.add_run_metadata(run_opts_metadata, 'step%03d' % i)
validation_writer.add_summary(validation_summary, i)
print("{i} training accuracy: {train_acc}, validation accuracy: {validation_acc}".format(train_acc=train_accuracy,validation_acc=validation_accuracy,i=i))
train_step.run(feed_dict={x: predictors, y_: target})
# Save the trained model to a file
saver = tf.train.Saver()
save_path = saver.save(sess, "/Users/ryanzotti/Documents/repos/Self-Driving-Car/trained_model/model.ckpt")
# Marks unambiguous successful completion to prevent deletion by cleanup script
shell_command('touch '+tfboard_run_dir+'/SUCCESS')