In this section, we will take $deepmd_source_dir/examples/water/se_e2_a/input.json
as an example of the input file.
The construction of the fitting net is given by section {ref}fitting_net <model/fitting_net>
"fitting_net" : {
"neuron": [240, 240, 240],
"resnet_dt": true,
"seed": 1
},
- {ref}
neuron <model/fitting_net[ener]/neuron>
specifies the size of the fitting net. If two neighboring layers are of the same size, then a ResNet architecture is built between them. - If the option {ref}
resnet_dt <model/fitting_net[ener]/resnet_dt>
is set totrue
, then a timestep is used in the ResNet. - {ref}
seed <model/fitting_net[ener]/seed>
gives the random seed that is used to generate random numbers when initializing the model parameters.
The loss function
where
where start_pref_f <loss[ener]/start_pref_f>
and {ref}limit_pref_f <loss[ener]/limit_pref_f>
, respectively), i.e.
The {ref}loss <loss>
section in the input.json
is
"loss" : {
"start_pref_e": 0.02,
"limit_pref_e": 1,
"start_pref_f": 1000,
"limit_pref_f": 1,
"start_pref_v": 0,
"limit_pref_v": 0
}
The options {ref}start_pref_e <loss[ener]/start_pref_e>
, {ref}limit_pref_e <loss[ener]/limit_pref_e>
, {ref}start_pref_f <loss[ener]/start_pref_f>
, {ref}limit_pref_f <loss[ener]/limit_pref_f>
, {ref}start_pref_v <loss[ener]/start_pref_v>
and {ref}limit_pref_v <loss[ener]/limit_pref_v>
determine the start and limit prefactors of energy, force and virial, respectively.
If one does not want to train with virial, then he/she may set the virial prefactors {ref}start_pref_v <loss[ener]/start_pref_v>
and {ref}limit_pref_v <loss[ener]/limit_pref_v>
to 0.