-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathmoving_mnist.py
324 lines (272 loc) · 11.7 KB
/
moving_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
"""Code is adapted from https://github.com/tychovdo/MovingMNIST."""
import torch.utils.data as data
from PIL import Image
import os
import os.path
import errno
import numpy as np
import torch
import torch.nn.functional as F
import codecs
import pytorch_lightning as pl
from sklearn.model_selection import train_test_split
from torch.utils.data import random_split, Subset, DataLoader
from typing import Optional
class MovingMNIST(data.Dataset):
"""`MovingMNIST <http://www.cs.toronto.edu/~nitish/unsupervised_video/>`_ Dataset.
Args:
root (string): Root directory of dataset where ``processed/training.pt``
and ``processed/test.pt`` exist.
train (bool, optional): If True, creates dataset from ``training.pt``,
otherwise from ``test.pt``.
split (int, optional): Train/test split size. Number defines how many samples
belong to test set.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in an PIL
image and returns a transformed version. E.g, ``transforms.RandomCrop``
"""
urls = [
'https://github.com/tychovdo/MovingMNIST/raw/master/mnist_test_seq.npy.gz'
]
raw_folder = 'raw'
processed_folder = 'processed'
training_file = 'moving_mnist_train.pt'
test_file = 'moving_mnist_test.pt'
def __init__(self, root, train=True, split=1000, transform=None, target_transform=None,
post_transform=None, post_target_transform=None, download=False):
self.root = os.path.expanduser(root)
self.transform = transform
self.target_transform = target_transform
self.post_transform = post_transform
self.post_target_transform = post_target_transform
self.split = split
self.train = train # training set or test set
if download:
self.download()
if not self._check_exists():
raise RuntimeError('Dataset not found.' +
' You can use download=True to download it')
if self.train:
self.train_data = torch.load(
os.path.join(self.root, self.processed_folder, self.training_file))
else:
self.test_data = torch.load(
os.path.join(self.root, self.processed_folder, self.test_file))
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (seq, target) where sampled sequences are split into a seq
and target part
"""
# need to iterate over time
def _transform_time(data):
new_data = []
for i in range(data.size(0)):
img = Image.fromarray(data[i].numpy(), mode='L')
new_data.append(self.transform(img))
return torch.cat(new_data, dim=0)
if self.train:
seq, target = self.train_data[index, :10], self.train_data[index, 10:]
else:
seq, target = self.test_data[index, :10], self.test_data[index, 10:]
if self.transform is not None:
seq = _transform_time(seq)
if self.target_transform is not None:
target = _transform_time(target)
if self.post_transform is not None:
seq = self.post_transform(seq)
if self.post_target_transform is not None:
target = self.post_target_transform(target)
seq = (seq / 255.0).float()
target = (target / 255.0).float()
return seq, target
def __len__(self):
if self.train:
return len(self.train_data)
else:
return len(self.test_data)
def _check_exists(self):
return os.path.exists(os.path.join(self.root, self.processed_folder, self.training_file)) and \
os.path.exists(os.path.join(self.root, self.processed_folder, self.test_file))
def download(self):
"""Download the Moving MNIST data if it doesn't exist in processed_folder already."""
from six.moves import urllib
import gzip
if self._check_exists():
return
# download files
try:
os.makedirs(os.path.join(self.root, self.raw_folder))
os.makedirs(os.path.join(self.root, self.processed_folder))
except OSError as e:
if e.errno == errno.EEXIST:
pass
else:
raise
for url in self.urls:
print('Downloading ' + url)
data = urllib.request.urlopen(url)
filename = url.rpartition('/')[2]
file_path = os.path.join(self.root, self.raw_folder, filename)
with open(file_path, 'wb') as f:
f.write(data.read())
with open(file_path.replace('.gz', ''), 'wb') as out_f, \
gzip.GzipFile(file_path) as zip_f:
out_f.write(zip_f.read())
os.unlink(file_path)
# process and save as torch files
print('Processing...')
training_set = torch.from_numpy(
np.load(os.path.join(self.root, self.raw_folder, 'mnist_test_seq.npy')).swapaxes(0, 1)[:-self.split]
)
test_set = torch.from_numpy(
np.load(os.path.join(self.root, self.raw_folder, 'mnist_test_seq.npy')).swapaxes(0, 1)[-self.split:]
)
with open(os.path.join(self.root, self.processed_folder, self.training_file), 'wb') as f:
torch.save(training_set, f)
with open(os.path.join(self.root, self.processed_folder, self.test_file), 'wb') as f:
torch.save(test_set, f)
print('Done!')
def __repr__(self):
fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
tmp = 'train' if self.train is True else 'test'
fmt_str += ' Train/test: {}\n'.format(tmp)
fmt_str += ' Root Location: {}\n'.format(self.root)
tmp = ' Transforms (if any): '
fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
tmp = ' Target Transforms (if any): '
fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
return fmt_str
class NearestInterpTransform:
def __init__(self, target_thw, layout='THWC'):
"""
Parameters
----------
target_thw
The target shape with (T, H, W)
"""
self.target_thw = target_thw
self.layout = layout
def __call__(self, data):
"""
Parameters
----------
data
Shape (T, H, W) or (T, H, W, C)
Returns
-------
rescaled_data
Shape (T, H, W, C)
C will be 1 if the input data shape is (T, H, W)
"""
if self.target_thw == data.shape:
return data.view(*tuple(self.target_thw + (1,)))
else:
assert len(data.shape) == 3
rescaled_data = F.interpolate(data.view((1, 1) + data.shape), self.target_thw, mode='nearest')
rescaled_data = rescaled_data.view(self.target_thw + (1,))
print('rescaled_data.shape=', rescaled_data.shape)
return rescaled_data
class MovingMNISTDataModule(pl.LightningDataModule):
def __init__(self,
root: str = None,
val_ratio=0.1, seed=123, batch_size: int = 32,
rescale_input_shape=None, rescale_target_shape=None):
"""
Parameters
----------
root
val_ratio
batch_size
rescale_input_shape
For the purpose of testing. Rescale the inputs
rescale_target_shape
For the purpose of testing. Rescale the targets
"""
super().__init__()
if root is None:
from ...config import cfg
root = os.path.join(cfg.datasets_dir, "moving_mnist")
self.root = root
self.val_ratio = val_ratio
self.seed = seed
self.batch_size = batch_size
self.rescale_input_shape = rescale_input_shape
self.rescale_target_shape = rescale_target_shape
if self.rescale_input_shape is None:
self.post_transform = NearestInterpTransform(target_thw=(10, 64, 64))
else:
self.post_transform = NearestInterpTransform(target_thw=self.rescale_input_shape)
if self.rescale_target_shape is None:
self.post_target_transform = NearestInterpTransform(target_thw=(10, 64, 64))
else:
self.post_target_transform = NearestInterpTransform(target_thw=self.rescale_target_shape)
def prepare_data(self):
MovingMNIST(self.root, train=True, download=True)
MovingMNIST(self.root, train=False, download=True)
@property
def input_shape(self):
"""
Returns
-------
ret
Contains (T, H, W, C)
"""
if self.rescale_input_shape is not None:
return self.rescale_input_shape + (1,)
else:
return 10, 64, 64, 1
@property
def target_shape(self):
"""
Returns
-------
"""
if self.rescale_target_shape is not None:
return self.rescale_target_shape + (1,)
else:
return 10, 64, 64, 1
def setup(self, stage: Optional[str] = None):
if stage == "fit" or stage is None:
train_val_data = MovingMNIST(self.root, train=True,
post_transform=self.post_transform,
post_target_transform=self.post_target_transform)
all_indices = range(len(train_val_data))
train_indices, val_indices = train_test_split(all_indices, test_size=self.val_ratio, random_state=self.seed)
self.moving_mnist_train = Subset(train_val_data, train_indices)
self.moving_mnist_val = Subset(train_val_data, val_indices)
if stage == "test" or stage is None:
self.moving_mnist_test = MovingMNIST(self.root, train=False,
post_transform=self.post_transform,
post_target_transform=self.post_target_transform)
if stage == "predict" or stage is None:
self.moving_mnist_predict = MovingMNIST(self.root, train=False,
post_transform=self.post_transform,
post_target_transform=self.post_target_transform)
def train_dataloader(self):
return DataLoader(self.moving_mnist_train, batch_size=self.batch_size, shuffle=True, num_workers=4)
def val_dataloader(self):
return DataLoader(self.moving_mnist_val, batch_size=self.batch_size, shuffle=False, num_workers=4)
def test_dataloader(self):
return DataLoader(self.moving_mnist_test, batch_size=self.batch_size, shuffle=False, num_workers=4)
def predict_dataloader(self):
return DataLoader(self.moving_mnist_predict, batch_size=self.batch_size, shuffle=False, num_workers=4)
@property
def num_train_samples(self):
return len(self.moving_mnist_train)
@property
def num_val_samples(self):
return len(self.moving_mnist_val)
@property
def num_test_samples(self):
return len(self.moving_mnist_test)
@property
def num_predict_samples(self):
return len(self.moving_mnist_predict)