-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
392 lines (327 loc) · 18.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
from models.biLSTM_SiameseMR import SiameseNN
from operator import add
from scipy.stats import rankdata
import tensorflow as tf
import time as ti
import os
import numpy as np
import logging
import matplotlib
from matplotlib import style
style.use('seaborn-whitegrid')
matplotlib.use('Agg')
import matplotlib.pyplot as plt
def train(argv):
train_batches = argv.train_batches
dev_batches = argv.dev_batches
test_batches = argv.test_batches
nominal_test_batches = argv.nominal_test_batches
pronominal_test_batches = argv.pronominal_test_batches
embeddings = argv.embeddings
pos_vocabulary = argv.pos_vocabulary
tf.reset_default_graph()
with tf.Graph().as_default():
#tf.set_random_seed(24)
gpu_options = tf.GPUOptions(allow_growth=True)
session_conf = tf.ConfigProto(allow_soft_placement=True,
log_device_placement=True,
gpu_options=gpu_options)
sess = tf.Session(config=session_conf)
with sess.as_default():
pa_model = SiameseNN(embeddings=embeddings,
embeddings_size=embeddings.shape[1],
embeddings_number=embeddings.shape[0],
embeddings_pretrain=argv.pretrained_emb,
embeddings_trainable=argv.train_emb,
embeddings_pos_size=argv.pos_emb_size,
embeddings_pos_number=len(pos_vocabulary),
embeddings_pos_trainable=argv.train_pos_emb,
hidden_size=argv.hidden_size,
tag_feature=argv.tag_feature,
anaphor_feature=argv.anaphor_feature,
ctx_feature=argv.ctx_feature,
hidden_size_ffl1 = argv.hidden_size_ffl1,
hidden_size_ffl2 = argv.hidden_size_ffl2,
reg_coef=argv.reg_coef,
shortcut=argv.shortcut,
use_ff1=argv.use_ff1,
use_ff2=argv.use_ff2
)
param_stats = tf.contrib.tfprof.model_analyzer.print_model_analysis(tf.get_default_graph(),
tfprof_options=tf.contrib.tfprof.model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS)
logging.info('Total_params: %d\n' % param_stats.total_parameters)
if argv.opt == "adam":
optimizer = tf.train.AdamOptimizer(learning_rate=argv.lr)
if argv.opt == "adadelta":
optimizer = tf.train.AdadeltaOptimizer(learning_rate=argv.lr)
if argv.opt == "rmsprop":
optimizer = tf.train.RMSPropOptimizer(learning_rate=argv.lr)
global_step = tf.Variable(0, name="global_step", trainable=False)
params = tf.trainable_variables()
gradients = tf.gradients(pa_model.loss, params)
clipped_gradients, norm = tf.clip_by_global_norm(gradients, argv.grad_clip)
gradient_norms = norm
updates = optimizer.apply_gradients(zip(clipped_gradients, params), global_step=global_step)
##### UNCOMMENT IF YOU WANT TO USE SUMMARIES###
'''
global_step = tf.Variable(0, name="global_step", trainable=False)
optimize = tf.contrib.layers.optimize_loss(pa_model.loss,
global_step=global_step,
learning_rate=argv.lr,
optimizer=optimizer,
clip_gradients=argv.grad_clip)
# Keep track of gradient values and sparsity (optional)
grads_and_vars = optimizer.compute_gradients(pa_model.loss)
for gv in grads_and_vars:
logging.info(str(gv[0]) + " - " + gv[1].name)
grad_summaries = []
for g, v in grads_and_vars:
if g is not None:
grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g)
sparsity_summary = tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
grad_summaries.append(grad_hist_summary)
grad_summaries.append(sparsity_summary)
grad_summaries_merged = tf.summary.merge(grad_summaries)
'''
# output directory for models
timestamp = str(int(ti.time()))
fname = "runs/ranking_" + argv.train_corpus + "_" + argv.candidates_num + '_arch_id_' + argv.arch_id
out_dir = os.path.abspath(os.path.join(os.path.curdir,
fname,
timestamp))
logging.info("Writing to %s " % out_dir)
'''
# Summaries for loss and accuracy
loss_summary = tf.summary.scalar("loss", pa_model.loss)
# Train Summaries
train_summary_op = tf.summary.merge([loss_summary, grad_summaries_merged])
train_summary_dir = os.path.join(out_dir, "summaries", "train")
train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
# Dev summaries
dev_summary_op = tf.summary.merge([loss_summary])
dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)
'''
# checkpoint setup
checkpoints_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_best = os.path.join(checkpoints_dir, "model")
if not os.path.exists(checkpoints_dir):
os.makedirs(checkpoints_dir)
saver = tf.train.Saver(tf.global_variables())
def step(batch, eval=False):
anaphors, sent_pa,\
positive_candidates, negative_candidates,\
positive_candidates_tag, negative_candidates_tag,\
sent_anaph_len, positive_candidates_len, negative_candidates_len,\
sent_pa_tag, num_positives, num_negatives, ctx_all, ctx_len = zip(*batch)
positive_candidates = list(positive_candidates)
negative_candidates = list(negative_candidates)
if not eval:
keep_rate_input = argv.keep_rate_input
keep_rate_cell_output = argv.keep_rate_cell_output
keep_ffl1_rate = argv.keep_ffl1_rate
keep_ffl2_rate = argv.keep_ffl2_rate
else:
keep_rate_input = 1.0
keep_rate_cell_output = 1.0
keep_ffl1_rate = 1.0
keep_ffl2_rate = 1.0
feed_dict = {pa_model.sent_pa: np.asarray(sent_pa, dtype=np.int32),
pa_model.sent_pa_len: np.asarray(sent_anaph_len, dtype=np.int32),
pa_model.positive_candidates: np.asarray(positive_candidates, dtype=np.int32),
pa_model.positive_candidates_len: np.asarray(positive_candidates_len, dtype=np.int32),
pa_model.negative_candidates: np.asarray(negative_candidates, dtype=np.int32),
pa_model.negative_candidates_len: np.asarray(negative_candidates_len, dtype=np.int32),
pa_model.anaphors: np.asarray(anaphors, dtype=np.int32),
pa_model.positive_candidates_tag: np.asarray(positive_candidates_tag, dtype=np.int32),
pa_model.negative_candidates_tag: np.asarray(negative_candidates_tag, dtype=np.int32),
pa_model.sent_pa_tag: np.asarray(sent_pa_tag, dtype=np.int32),
pa_model.num_positives: np.asarray(num_positives, dtype=np.int32),
pa_model.num_negatives: np.asarray(num_negatives, dtype=np.int32),
pa_model.ctx: np.asarray(ctx_all, dtype=np.int32),
pa_model.ctx_len: np.asarray(ctx_len, dtype=np.int32),
pa_model.keep_rate_input: keep_rate_input,
pa_model.keep_rate_cell_output: keep_rate_cell_output,
pa_model.keep_ffl1_rate: keep_ffl1_rate,
pa_model.keep_ffl2_rate: keep_ffl2_rate}
if not eval:
##### for summaries uncomment lines #####
_, _, step, scores, loss = sess.run([updates,
gradient_norms,
global_step,
#train_summary_op,
pa_model.scores,
pa_model.loss],
feed_dict=feed_dict)
#train_summary_writer.add_summary(summaries, step)
return scores, loss
else:
scores, loss = sess.run([pa_model.scores,
pa_model.loss],
feed_dict)
return scores, loss
init_vars = tf.global_variables_initializer()
sess.run(init_vars)
logging.info("Start training in %s epochs" % argv.num_epoch)
current_step = 0
total_time = 0.0
precisions_train = []
precisions_test = []
precisions_nominal_test = []
precisions_pronominal_test = []
precisions_dev = []
best_precision = 0.0
num_epoch = argv.num_epoch
best_dev_test = [0.0]*4
for epoch in range(0, argv.num_epoch):
logging.info("EPOCH %s" % (epoch + 1))
start_epoch = ti.time()
train_loss = 0.0
ns = 4
pn_train = [0]*ns
for train_batch in train_batches:
scores_train, loss_train = step(train_batch)
train_loss += loss_train
_, sent_pa, positive_candidates, negative_candidates, _, _, _, _, _, _, num_positives, _, _, _ = zip(*train_batch)
positive_candidates = list(positive_candidates)
negative_candidates = list(negative_candidates)
assert len(scores_train) == len(sent_pa)
all_candidates = len(positive_candidates[0]) + len(negative_candidates[0])
assert len(scores_train[0]) == all_candidates
pn_batch = precision_n(scores_train, num_positives, ns)
pn_train = map(add, pn_batch, pn_train)
pn_train[:] = [x / (float(len(train_batches))) for x in pn_train]
precision_train = pn_train[0]
precisions_train.append(precision_train)
train_loss /= (float(len(train_batches)))
logging.info('train loss: %s' % train_loss)
logging.info('train precision at %s' % ns)
logging.info(pn_train)
pn_dev = [0]*ns
for dev_batch in dev_batches:
scores_dev, loss_dev = step(dev_batch, eval=True)
_, sent_pa, positive_candidates, negative_candidates, _, _, _, _, _, _, num_positives, _, _, _ = zip(*dev_batch)
positive_candidates = list(positive_candidates)
negative_candidates = list(negative_candidates)
assert len(scores_dev) == len(sent_pa)
all_candidates = len(positive_candidates[0]) + len(negative_candidates[0])
assert len(scores_dev[0]) == all_candidates
pn_batch = precision_n(scores_dev, num_positives, ns)
pn_dev = map(add, pn_batch, pn_dev)
pn_dev[:] = [x / (float(len(dev_batches))) for x in pn_dev]
precision_dev = pn_dev[0]
precisions_dev.append(precision_dev)
logging.info('Dev precision at %s:' % ns)
logging.info(pn_dev)
pn_test = [0]*ns
for test_batch in test_batches:
scores_test, loss_test = step(test_batch, eval=True)
_, sent_pa, positive_candidates, negative_candidates, _, _, _, _, _, _, num_positives, _, _, _ = zip(*test_batch)
positive_candidates = list(positive_candidates)
negative_candidates = list(negative_candidates)
assert len(scores_test) == len(sent_pa)
all_candidates = len(positive_candidates[0]) + len(negative_candidates[0])
assert len(scores_test[0]) == all_candidates
pn_batch = precision_n(scores_test, num_positives, ns)
pn_test = map(add, pn_batch, pn_test)
pn_test[:] = [x / (float(len(test_batches))) for x in pn_test]
precision_test = pn_test[0]
precisions_test.append(precision_test)
logging.info('Test precision at %s:' % ns)
logging.info(pn_test)
pn_pronominal_test = [0]*ns
for test_batch in pronominal_test_batches:
scores_test, loss_test = step(test_batch, eval=True)
_, sent_pa, positive_candidates, negative_candidates, _, _, _, _, _, _, num_positives, _, _, _ = zip(*test_batch)
positive_candidates = list(positive_candidates)
negative_candidates = list(negative_candidates)
assert len(scores_test) == len(sent_pa)
all_candidates = len(positive_candidates[0]) + len(negative_candidates[0])
assert len(scores_test[0]) == all_candidates
pn_batch = precision_n(scores_test, num_positives, ns)
pn_pronominal_test = map(add, pn_batch, pn_pronominal_test)
pn_pronominal_test[:] = [x / (float(len(pronominal_test_batches))) for x in pn_pronominal_test]
precision_test = pn_pronominal_test[0]
precisions_pronominal_test.append(precision_test)
logging.info('pronominal test precision at %s:' % ns)
logging.info(pn_pronominal_test)
pn_nominal_test = [0]*ns
for test_batch in nominal_test_batches:
scores_test, loss_test = step(test_batch, eval=True)
_, sent_pa, positive_candidates, negative_candidates, _, _, _, _, _, _, num_positives, _, _, _ = zip(*test_batch)
positive_candidates = list(positive_candidates)
negative_candidates = list(negative_candidates)
assert len(scores_test) == len(sent_pa)
all_candidates = len(positive_candidates[0]) + len(negative_candidates[0])
assert len(scores_test[0]) == all_candidates
pn_batch = precision_n(scores_test, num_positives, ns)
pn_nominal_test = map(add, pn_batch, pn_nominal_test)
pn_nominal_test[:] = [x / (float(len(nominal_test_batches))) for x in pn_nominal_test]
precision_test = pn_nominal_test[0]
precisions_nominal_test.append(precision_test)
logging.info('nominal test precision at %s:' % ns)
logging.info(pn_nominal_test)
if precision_dev > best_precision:
logging.info("Better precision!")
best_precision = precision_dev
best_dev_test = pn_test
best_dev_nominal_test = pn_nominal_test
best_dev_pronominal_test = pn_pronominal_test
# save
path = saver.save(sess, checkpoint_best)
logging.info("Saved best model checkpoint to {}\n".format(path))
epoch_time = (ti.time() - start_epoch) / float(60)
logging.info("trained and evaluated epoch %s in time %s minutes" % (epoch + 1, epoch_time))
total_time += epoch_time
logging.info("Total time in %s epochs: %s" % (epoch + 1, total_time))
if precision_train > 99:
num_epoch = epoch + 1
break
logging.info("Saving performance figure...")
plt.figure(dpi=400)
plt.rcParams['font.size'] = 10
plt.rcParams['axes.labelsize'] = 12
plt.rcParams['axes.labelweight'] = 'bold'
plt.rcParams['axes.titlesize'] = 12
plt.rcParams['xtick.labelsize'] = 10
plt.rcParams['ytick.labelsize'] = 10
plt.rcParams['legend.fontsize'] = 10
plt.rcParams['figure.titlesize'] = 12
steps = range(1, num_epoch+1)
plt.plot(steps, precisions_train, linewidth=2, color='#6699ff', linestyle='-', marker='o', markeredgecolor='black',
markeredgewidth=0.5, label='train')
plt.plot(steps, precisions_test, linewidth=6, color='#ff4d4d', linestyle='-', marker='D', markeredgecolor='black',
markeredgewidth=0.5, label='test')
plt.plot(steps, precisions_nominal_test, linewidth=6, color='#ff3300', linestyle='-', marker='D',
markeredgecolor='black',
markeredgewidth=0.5, label='test nominal')
plt.plot(steps, precisions_pronominal_test, linewidth=6, color='#660033', linestyle='-', marker='D',
markeredgecolor='black',
markeredgewidth=0.5, label='test pronominal')
plt.plot(steps, precisions_dev, linewidth=4, color='#ffcc66', linestyle='-', marker='s', markeredgecolor='black',
markeredgewidth=0.5, label='dev')
plt.xlabel('epochs')
plt.ylabel('s @ 1')
plt.legend(loc='best', numpoints=1, fancybox=True)
fig_path = "figs/" + argv.train_corpus + '_arch_id_' + argv.arch_id + ".png"
plt.savefig(fig_path)
return best_dev_test, best_dev_nominal_test, best_dev_pronominal_test
def precision_n(test_scores, num_true, n):
"""
Precision at n measure is the number of instances where the any crowd's answer occur within ranker's firs n choices
For more details take a look at: http://www.aclweb.org/anthology/D13-1030
The first num_true_antec[i] dev_scores are predicted scores for true antecedents of the i-th sentence w/ PA
:param test_scores: \in [batch_size, num of candidates], for every sent w\ PA predicted scores for its candidates
:param num_true_antec: \in [batch_size], for every sent w\ PA number of true antecedents
:return: list of size 10
"""
precisions = []
for i in range(n):
precision = 0
for k, item in enumerate(test_scores):
ranks = len(item) - rankdata(item, method='ordinal').astype(int)
precision += min(1, len(set(ranks[:num_true[k]]) & set(range(i+1))))
precision /= float(len(test_scores))
precision *= 100
precisions.append(precision)
return precisions