-
Notifications
You must be signed in to change notification settings - Fork 1
/
ai-sourcing-script.py
139 lines (119 loc) · 5.43 KB
/
ai-sourcing-script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
To finalize the Python library, we’ll integrate all components we've discussed, including:
Libraries and Dependencies: Flask, cryptography, hashlib, tempfile, pyotp, logging, scikit-learn, numpy, py_ecc, google-auth, deepface, and face_recognition.
Security Measures: Encrypting sensitive data, authenticating users, handling HTTP requests, and managing access control.
Here’s an example of a comprehensive Python script that demonstrates integrating these components:
python
Copy code
from flask import Flask, request, jsonify
import os
from cryptography.fernet import Fernet
import hashlib
import tempfile
import pyotp
import logging
from sklearn.ensemble import IsolationForest
import numpy as np
from py_ecc import bn128
from google.oauth2 import service_account
from google.auth.transport.requests import Request
from deepface import DeepFace
import face_recognition
# Initialize Flask application
app = Flask(__name__)
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Encryption key for securing sensitive data (in production, store and manage keys securely)
key = Fernet.generate_key()
cipher_suite = Fernet(key)
# Dummy database of authorized users (replace with a secure database in production)
AUTHORIZED_USERS = {
'user1': 'password1',
'user2': 'password2'
}
def encrypt_data(data):
"""Encrypt sensitive data."""
return cipher_suite.encrypt(data.encode()).decode()
def decrypt_data(encrypted_data):
"""Decrypt sensitive data."""
return cipher_suite.decrypt(encrypted_data.encode()).decode()
def hash_password(password):
"""Generate a secure hash for a password."""
return hashlib.sha256(password.encode()).hexdigest()
def is_authorized(username, password):
"""Check if the user is authorized."""
return AUTHORIZED_USERS.get(username) == password
@app.route('/login', methods=['POST'])
def login():
"""Authenticate users and provide access."""
data = request.json
username = data.get('username')
password = data.get('password')
if is_authorized(username, password):
logging.info(f"User '{username}' authenticated successfully.")
return jsonify({"message": "Access granted"}), 200
else:
logging.warning(f"Unauthorized access attempt by '{username}'.")
return jsonify({"message": "Access denied"}), 403
@app.route('/secure-data', methods=['GET'])
def secure_data():
"""Serve secure data only to authorized users."""
auth_header = request.headers.get('Authorization')
if not auth_header:
return jsonify({"message": "Authorization header missing"}), 401
username, password = decode_auth_header(auth_header)
if is_authorized(username, password):
logging.info(f"User '{username}' accessed secure data.")
return jsonify({"data": "This is secure data."}), 200
else:
logging.warning(f"Unauthorized access attempt to secure data by '{username}'.")
return jsonify({"message": "Access denied"}), 403
def decode_auth_header(header):
"""Decode authorization header to get username and password."""
# Example implementation; in production, use more secure methods for decoding
return header.split(':')
@app.route('/temp-file', methods=['GET'])
def temp_file():
"""Create a temporary file."""
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_file.write(b'This is a temporary file.')
temp_file_path = temp_file.name
logging.info(f"Temporary file created at {temp_file_path}")
return jsonify({"message": "Temporary file created", "path": temp_file_path}), 200
@app.route('/otp', methods=['GET'])
def generate_otp():
"""Generate a one-time password."""
otp = pyotp.TOTP('base32secret3232').now()
logging.info(f"Generated OTP: {otp}")
return jsonify({"otp": otp}), 200
@app.route('/detect-face', methods=['POST'])
def detect_face():
"""Detect faces in an image."""
file = request.files.get('image')
if not file:
return jsonify({"message": "No image file provided"}), 400
image_path = os.path.join(tempfile.gettempdir(), 'image.jpg')
file.save(image_path)
image = face_recognition.load_image_file(image_path)
face_locations = face_recognition.face_locations(image)
logging.info(f"Detected {len(face_locations)} face(s).")
return jsonify({"faces": len(face_locations)}), 200
@app.route('/deepface-analysis', methods=['POST'])
def deepface_analysis():
"""Perform deep learning-based face analysis."""
file = request.files.get('image')
if not file:
return jsonify({"message": "No image file provided"}), 400
image_path = os.path.join(tempfile.gettempdir(), 'image.jpg')
file.save(image_path)
analysis = DeepFace.analyze(image_path, actions=['age', 'gender', 'emotion'])
logging.info(f"DeepFace analysis result: {analysis}")
return jsonify({"analysis": analysis}), 200
if __name__ == '__main__':
app.run(debug=True)
Key Points:
Encryption: Uses cryptography.fernet for securing sensitive data.
Hashing: Securely hashes passwords with hashlib.
Temporary Files: Creates and manages temporary files with tempfile.
OTP: Generates one-time passwords with pyotp.
Face Recognition: Detects faces using face_recognition and performs deep learning analysis with DeepFace.
This script serves as a foundational example, and you can extend it further based on your specific needs. Let me know if there are any additional features or changes you’d like to incorporate!