-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinverseCalibration_distributions.R
executable file
·273 lines (230 loc) · 8.46 KB
/
inverseCalibration_distributions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#### Aim of prog: Compute different moments from mean and variance for few distributions
## Comments:
# It is easy to prove that the skewness of the gamma is always less than the skewness of the lognormal.
# Skewness(gamma) = 2*sd/mean
# Skewness(lognormal) = (var/mean^2 + 3)*sd/mean
# And therefore the difference (gamma - lognormal) is - sd/mean*(var/mean^2 + 1) < 0
library(extraDistr)
library(rootSolve)
library(nakagami)
library(moments)
inverseCalibration = function(fun, ...)
{
# Check if distribution is included
if (!isTRUE(all.equal(fun, dchisq)) &&
!isTRUE(all.equal(fun, dgamma)) &&
!isTRUE(all.equal(fun, dlnorm)) &&
!isTRUE(all.equal(fun, dnaka)) &&
!isTRUE(all.equal(fun, dnorm)) &&
!isTRUE(all.equal(fun, dwald)) &&
!isTRUE(all.equal(fun, dweibull)))
stop("This function only accepts dchisq, dgamma, dlnorm, dnaka, dnorm, dwald or dweibull as priors")
# Get list of arguments
providedArgs = list(...)
ls_names = names(providedArgs)
# Define output
output = list(mean = NA, sd = NA, var = NA, skewness = NA, arg1 = NA, arg2 = NA)
# Chi-square
if (isTRUE(all.equal(fun, dchisq))) # Checked and validated computation
{
if ((!all(c("mean", "var") %in% names(providedArgs))) && (!all(c("df", "ncp") %in% names(providedArgs))))
stop("You must provide either mean and var or df and ncp for dchisq")
if (all(c("mean", "var") %in% names(providedArgs)))
{
temp1 = providedArgs[["mean"]]
temp2 = providedArgs[["var"]]
arg1 = 2*temp1 - temp2/2 # degrees of freedom
arg2 = temp2/2 - temp1 # non-central parameter
} else {
arg1 = providedArgs[["df"]]
arg2 = providedArgs[["ncp"]]
}
output[["mean"]] = arg1 + arg2
output[["var"]] = 2*arg1 + 4*arg2
output[["sd"]] = sqrt(output[["var"]])
output[["skewness"]] = sqrt(8)*(arg1 + 3*arg2)/(arg1 + 2*arg2)^1.3
output[["arg1"]] = arg1
output[["arg2"]] = arg2
}
# Gamma
if (isTRUE(all.equal(fun, dgamma))) # Checked and validated computation
{
if ((!all(c("mean", "var") %in% names(providedArgs))) && (!all(c("shape", "rate") %in% names(providedArgs))))
stop("You must provide either mean and var or shape and rate for dgamma")
if (all(c("mean", "var") %in% names(providedArgs)))
{
temp1 = providedArgs[["mean"]]
temp2 = providedArgs[["var"]]
arg1 = temp1^2/temp2 # shape
arg2 = temp1/temp2 # rate
} else {
arg1 = providedArgs[["shape"]]
arg2 = providedArgs[["rate"]]
}
output[["mean"]] = arg1/arg2
output[["var"]] = arg1/arg2^2
output[["sd"]] = sqrt(output[["var"]])
output[["skewness"]] = 2/sqrt(arg1) # = 2*sd/mean
output[["arg1"]] = arg1
output[["arg2"]] = arg2
}
# Lognormal
if (isTRUE(all.equal(fun, dlnorm))) # Checked and validated computation
{
if ((!all(c("mean", "sd") %in% names(providedArgs))) && (!all(c("meanlog", "sdlog") %in% names(providedArgs))))
stop("You must provide mean and sd or meanlog and sdlog for dlnorm")
if (all(c("mean", "sd") %in% names(providedArgs)))
{
dlnorm_mean = providedArgs[["mean"]]
dlnorm_sd = providedArgs[["sd"]]
arg1 = log(dlnorm_mean^2/sqrt(dlnorm_sd^2 + dlnorm_mean^2))
arg2 = sqrt(log(dlnorm_sd^2/dlnorm_mean^2 + 1))
} else {
arg1 = providedArgs[["meanlog"]]
arg2 = providedArgs[["sdlog"]]
}
m = exp(arg1)
omega = exp(arg2^2) # For compactness
output[["mean"]] = m*exp(arg2^2/2)
output[["var"]] = m^2*omega*(omega - 1)
output[["sd"]] = sqrt(output[["var"]])
output[["skewness"]] = (omega + 2)*sqrt(omega - 1) # = (var/mean^2 + 3)*var/mean
output[["arg1"]] = arg1
output[["arg2"]] = arg2
}
# Nakagami
if (isTRUE(all.equal(fun, nakagami::dnaka))) # Checked and validated computation (with a trick for arg2)
{
if ((!all(c("mean", "var") %in% names(providedArgs))) && (!all(c("shape", "scale") %in% names(providedArgs))))
stop("You must provide either mean and var or shape and rate for dnaka")
if (all(c("mean", "var") %in% names(providedArgs)))
{
temp1 = providedArgs[["mean"]]
temp2 = providedArgs[["var"]]
eqnarray = function(shape, ...)
{
providedArgs = list(...)
meanArg = providedArgs[["meanArg"]]
varArg = providedArgs[["varArg"]]
F1 = meanArg^2*(shape*gamma(shape)^2/gamma(shape + 0.5)^2 - 1) - varArg
return (c(F1 = F1))
}
if ("start" %in% ls_names)
{
start = providedArgs[["start"]]
} else {
start = 5
}
arg1 = multiroot(f = eqnarray, start = start, meanArg = temp1, varArg = temp2)$root # shape
arg2 = temp1*sqrt(arg1)*gamma(arg1)/gamma(arg1 + 0.5) # scale
} else {
arg1 = providedArgs[["shape"]]
arg2 = providedArgs[["scale"]]
}
output[["mean"]] = arg2*gamma(arg1 + 0.5)/(sqrt(arg1)*gamma(arg1))
output[["var"]] = arg2^2*(1 - gamma(arg1 + 0.5)^2/(arg1 * gamma(arg1)^2))
output[["sd"]] = sqrt(output[["var"]])
output[["skewness"]] = arg2^3*(2*gamma(arg1 + 0.5)^3 + 0.5*(1 - 4*arg1)*gamma(arg1)^2*gamma(arg1 + 0.5))/(arg1^1.5*gamma(arg1)^3)
output[["arg1"]] = arg1
# Necessary to put a square here, as dnaka uses the Wikipedia paramtrisation, while I used another one for analytical calculus
output[["arg2"]] = arg2^2
}
# Normal
if (isTRUE(all.equal(fun, dnorm))) # Checked and validated computation
{
if (!all(c("mean", "sd") %in% names(providedArgs)))
stop("You must provide mean and sd for dnorm")
arg1 = providedArgs[["mean"]]
arg2 = providedArgs[["sd"]]
output[["mean"]] = arg1
output[["sd"]] = arg2
output[["var"]] = arg2^2
output[["skewness"]] = 0
output[["arg1"]] = arg1
output[["arg2"]] = arg2
}
# # Pareto
# if (isTRUE(all.equal(fun, dpareto))) # Checked and validated computation
# {
# if ((!all(c("mean", "var") %in% names(providedArgs))) & (!all(c("location", "scale") %in% names(providedArgs))))
# stop("You must provide either mean and var or shape and scale for dwald")
# if (all(c("mean", "var") %in% names(providedArgs)))
# {
# arg1 = providedArgs[["mean"]] # location
# arg2 = arg1^3/providedArgs[["var"]] # scale
# } else {
# arg1 = providedArgs[["location"]]
# arg2 = providedArgs[["scale"]]
# }
# output[["mean"]] = arg1
# output[["var"]] = arg1^3/arg2
# output[["sd"]] = sqrt(output[["var"]])
# output[["skewness"]] = 3*sqrt(arg1/arg2)
# output[["arg1"]] = arg1
# output[["arg2"]] = arg2
# }
# Wald
if (isTRUE(all.equal(fun, dwald))) # Checked and validated computation
{
if ((!all(c("mean", "var") %in% names(providedArgs))) && (!all(c("location", "scale") %in% names(providedArgs))))
stop("You must provide either mean and var or shape and scale for dwald")
if (all(c("mean", "var") %in% names(providedArgs)))
{
arg1 = providedArgs[["mean"]] # location
arg2 = arg1^3/providedArgs[["var"]] # scale
} else {
arg1 = providedArgs[["location"]]
arg2 = providedArgs[["scale"]]
}
output[["mean"]] = arg1
output[["var"]] = arg1^3/arg2
output[["sd"]] = sqrt(output[["var"]])
output[["skewness"]] = 3*sqrt(arg1/arg2)
output[["arg1"]] = arg1
output[["arg2"]] = arg2
}
# Weibull
if (isTRUE(all.equal(fun, dweibull))) # Checked and validated computation
{
if ((!all(c("mean", "var") %in% names(providedArgs))) && (!all(c("shape", "scale") %in% names(providedArgs))))
stop("You must provide either mean and var or shape and scale for dweibull")
# There is no analytical method. Check https://www.scionresearch.com/__data/assets/pdf_file/0003/59286/NZJFS1131981GARCIA304-306.pdf
if (all(c("mean", "var") %in% names(providedArgs)))
{
temp1 = providedArgs[["mean"]]
temp2 = providedArgs[["var"]]
eqnarray = function(shape, ...)
{
providedArgs = list(...)
meanArg = providedArgs[["meanArg"]]
varArg = providedArgs[["varArg"]]
F1 = gamma(1 + 2/shape)/gamma(1 + 1/shape)^2 - 1 - varArg/meanArg^2
return (c(F1 = F1))
}
if ("start" %in% ls_names)
{
start = providedArgs[["start"]]
} else {
start = 5
}
arg1 = multiroot(f = eqnarray, start = start, meanArg = temp1, varArg = temp2)$root # shape
arg2 = temp1/gamma(1 + 1/arg1) # scale
} else {
arg1 = providedArgs[["shape"]]
arg2 = providedArgs[["scale"]]
}
output[["mean"]] = arg2 * gamma(1 + 1/arg1)
output[["var"]] = arg2^2 * ( gamma(1 + 2/arg1) - gamma(1 + 1/arg1)^2 )
output[["sd"]] = sqrt(output[["var"]])
output[["skewness"]] = ( 2*gamma(1 + 1/arg1)^3 - 3*gamma(1 + 1/arg1)*gamma(1 + 2/arg1) + gamma(1 + 3/arg1) )/
(gamma(1 + 2/arg1) - gamma(1 + 1/arg1)^2)^(3/2)
output[["arg1"]] = arg1
output[["arg2"]] = arg2
}
return (output)
}
aa = inverseCalibration(dchisq, mean = 4, var = 8)
qq = rchisq(n = 1e7, df = aa[["arg1"]], ncp = aa[["arg2"]])
mean(qq)
var(qq)
skewness(qq)