forked from k2-fsa/icefall
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare.sh
executable file
·245 lines (212 loc) · 6.98 KB
/
prepare.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
nj=15
# run step 0 to step 5 by default
stage=0
stop_stage=5
# Note: This script just prepare the minimal requirements that needed by a
# transducer training with bpe units.
#
# If you want to use ngram or nnlm, please continue running prepare_lm.sh after
# you succeed running this script.
#
# This script also contains the steps to generate phone based units, but they
# will not run automatically, you can generate the phone based units by
# bash prepare.sh --stage -1 --stop-stage -1
# bash prepare.sh --stage 6 --stop-stage 6
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/LibriSpeech
# You can find BOOKS.TXT, test-clean, train-clean-360, etc, inside it.
# You can download them from https://www.openslr.org/12
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
#
# lm directory is not necessary for transducer training with bpe units, but it
# is needed by phone based modeling, you can download it by running
# bash prepare.sh --stage -1 --stop-stage -1
# then you can see the following files in the directory.
# - $dl_dir/lm
# This directory contains the following files downloaded from
# http://www.openslr.org/resources/11
#
# - 3-gram.pruned.1e-7.arpa.gz
# - 3-gram.pruned.1e-7.arpa
# - 4-gram.arpa.gz
# - 4-gram.arpa
# - librispeech-vocab.txt
# - librispeech-lexicon.txt
# - librispeech-lm-norm.txt.gz
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
# 5000
# 2000
# 1000
500
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "Running prepare.sh"
log "dl_dir: $dl_dir"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: Download LM"
mkdir -p $dl_dir/lm
if [ ! -e $dl_dir/lm/.done ]; then
./local/download_lm.py --out-dir=$dl_dir/lm
touch $dl_dir/lm/.done
fi
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/LibriSpeech,
# you can create a symlink
#
# ln -sfv /path/to/LibriSpeech $dl_dir/LibriSpeech
#
if [ ! -d $dl_dir/LibriSpeech/train-other-500 ]; then
lhotse download librispeech --full $dl_dir
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare LibriSpeech manifest"
# We assume that you have downloaded the LibriSpeech corpus
# to $dl_dir/LibriSpeech
mkdir -p data/manifests
if [ ! -e data/manifests/.librispeech.done ]; then
lhotse prepare librispeech -j $nj $dl_dir/LibriSpeech data/manifests
touch data/manifests/.librispeech.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to $dl_dir/musan
mkdir -p data/manifests
if [ ! -e data/manifests/.musan.done ]; then
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for librispeech"
mkdir -p data/fbank
if [ ! -e data/fbank/.librispeech.done ]; then
./local/compute_fbank_librispeech.py
touch data/fbank/.librispeech.done
fi
if [ ! -f data/fbank/librispeech_cuts_train-all-shuf.jsonl.gz ]; then
cat <(gunzip -c data/fbank/librispeech_cuts_train-clean-100.jsonl.gz) \
<(gunzip -c data/fbank/librispeech_cuts_train-clean-360.jsonl.gz) \
<(gunzip -c data/fbank/librispeech_cuts_train-other-500.jsonl.gz) | \
shuf | gzip -c > data/fbank/librispeech_cuts_train-all-shuf.jsonl.gz
fi
if [ ! -e data/fbank/.librispeech-validated.done ]; then
log "Validating data/fbank for LibriSpeech"
parts=(
train-clean-100
train-clean-360
train-other-500
test-clean
test-other
dev-clean
dev-other
)
for part in ${parts[@]}; do
python3 ./local/validate_manifest.py \
data/fbank/librispeech_cuts_${part}.jsonl.gz
done
touch data/fbank/.librispeech-validated.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p data/fbank
if [ ! -e data/fbank/.musan.done ]; then
./local/compute_fbank_musan.py
touch data/fbank/.musan.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
mkdir -p $lang_dir
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate data for BPE training"
files=$(
find "$dl_dir/LibriSpeech/train-clean-100" -name "*.trans.txt"
find "$dl_dir/LibriSpeech/train-clean-360" -name "*.trans.txt"
find "$dl_dir/LibriSpeech/train-other-500" -name "*.trans.txt"
)
for f in ${files[@]}; do
cat $f | cut -d " " -f 2-
done > $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt
fi
done
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare phone based lang"
lang_dir=data/lang_phone
mkdir -p $lang_dir
if [ ! -f $dl_dir/lm/librispeech-lexicon.txt ]; then
log "No lexicon file in $dl_dir/lm, please run :"
log "prepare.sh --stage -1 --stop-stage -1"
exit -1
fi
if [ ! -f $lang_dir/lexicon.txt ]; then
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
cat - $dl_dir/lm/librispeech-lexicon.txt |
sort | uniq > $lang_dir/lexicon.txt
fi
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang.py --lang-dir $lang_dir
fi
if [ ! -f $lang_dir/L.fst ]; then
log "Converting L.pt to L.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L.pt \
$lang_dir/L.fst
fi
if [ ! -f $lang_dir/L_disambig.fst ]; then
log "Converting L_disambig.pt to L_disambig.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L_disambig.pt \
$lang_dir/L_disambig.fst
fi
fi