forked from janvarev/Irene-Voice-Assistant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
runva_vosk.py
137 lines (106 loc) · 3.99 KB
/
runva_vosk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import argparse
import os
import queue
import sounddevice as sd
import vosk
import sys
import traceback
import json
from vacore import VACore
mic_blocked = False
def block_mic():
global mic_blocked
#print("Blocking microphone...")
mic_blocked = True
# ------------------- vosk ------------------
if __name__ == "__main__":
q = queue.Queue()
def int_or_str(text):
"""Helper function for argument parsing."""
try:
return int(text)
except ValueError:
return text
def callback(indata, frames, time, status):
"""This is called (from a separate thread) for each audio block."""
if status:
print(status, file=sys.stderr)
if not mic_blocked:
q.put(bytes(indata))
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(
'-l', '--list-devices', action='store_true',
help='show list of audio devices and exit')
args, remaining = parser.parse_known_args()
if args.list_devices:
print(sd.query_devices())
parser.exit(0)
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter,
parents=[parser])
parser.add_argument(
'-f', '--filename', type=str, metavar='FILENAME',
help='audio file to store recording to')
parser.add_argument(
'-m', '--model', type=str, metavar='MODEL_PATH',
help='Path to the model')
parser.add_argument(
'-d', '--device', type=int_or_str,
help='input device (numeric ID or substring)')
parser.add_argument(
'-r', '--samplerate', type=int, help='sampling rate')
args = parser.parse_args(remaining)
#args = {}
try:
if args.model is None:
args.model = "model"
if not os.path.exists(args.model):
print ("Please download a model for your language from https://alphacephei.com/vosk/models")
print ("and unpack as 'model' in the current folder.")
parser.exit(0)
if args.samplerate is None:
device_info = sd.query_devices(args.device, 'input')
# soundfile expects an int, sounddevice provides a float:
args.samplerate = int(device_info['default_samplerate'])
model = vosk.Model(args.model)
if args.filename:
dump_fn = open(args.filename, "wb")
else:
dump_fn = None
with sd.RawInputStream(samplerate=args.samplerate, blocksize = 8000, device=args.device, dtype='int16',
channels=1, callback=callback):
print('#' * 80)
print('Press Ctrl+C to stop the recording')
print('#' * 80)
rec = vosk.KaldiRecognizer(model, args.samplerate)
# initing core
core = VACore()
#core.init_plugin("core")
#core.init_plugins(["core"])
core.init_with_plugins()
#core.play_wav('timer/Sounds/Loud beep.wav')
while True:
data = q.get()
if rec.AcceptWaveform(data):
recognized_data = rec.Result()
#print("1",recognized_data)
#print(recognized_data)
recognized_data = json.loads(recognized_data)
#print(recognized_data)
voice_input_str = recognized_data["text"]
if voice_input_str != "":
core.run_input_str(voice_input_str,block_mic)
mic_blocked = False
#print("UNBlocking microphone...")
else:
#print("2",rec.PartialResult())
pass
core._update_timers()
if dump_fn is not None:
dump_fn.write(data)
except KeyboardInterrupt:
print('\nDone')
parser.exit(0)
except Exception as e:
parser.exit(type(e).__name__ + ': ' + str(e))