-
Notifications
You must be signed in to change notification settings - Fork 0
135 lines (120 loc) · 4.84 KB
/
forest_loss_driver_prediction.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
name: Forest-Loss-Driver-Prediction
on:
workflow_dispatch:
push:
branches:
- henryh/favyen/forest-loss-20240917
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}
SERVICE_NAME: "rslearn_projects"
jobs:
build:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
outputs:
ghcr_docker_image: ${{ steps.image-names.outputs.ghcr_image_name }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Log in to the Container registry
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v5
with:
images: |
${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
tags: |
type=sha,format=long
type=sha,format=short
type=raw,value=latest,enable={{is_default_branch}}
- name: Cleanup disk space
run: |
sudo docker rmi $(docker image ls -aq) >/dev/null 2>&1 || true
sudo docker image prune --all --force >/dev/null 2>&1 || true
sudo rm -rf /usr/share/dotnet
sudo rm -rf /opt/ghc
sudo rm -rf /usr/local/share/boost
- name: Build and push Docker image
id: build-push
uses: docker/build-push-action@v6
with:
context: .
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
# cache-from: type=gha
# cache-to: type=gha,mode=max
build-args: |
GIT_USERNAME=${{ secrets.GIT_USERNAME }}
GIT_TOKEN=${{ secrets.GIT_TOKEN }}
- name: Store Image Names
id: image-names
run: |-
GHCR_IMAGE="${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}@${{ steps.build-push.outputs.digest }}"
GHCR_IMAGE=`echo ${GHCR_IMAGE} | tr '[:upper:]' '[:lower:]'` # docker requires that all image names be lowercase
echo "ghcr.io Docker image name is ${GHCR_IMAGE}"
echo "ghcr_image_name=\"${GHCR_IMAGE}\"" >> $GITHUB_OUTPUT
predict:
runs-on: ubuntu-latest-m
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Log in to the Container registry
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Cleanup disk space
run: |
sudo docker rmi $(docker image ls -aq) >/dev/null 2>&1 || true
sudo docker image prune --all --force >/dev/null 2>&1 || true
sudo rm -rf /usr/share/dotnet
sudo rm -rf /opt/ghc
sudo rm -rf /usr/local/share/boost
- name: Authenticate into gcp
uses: "google-github-actions/auth@v2"
with:
credentials_json: ${{ secrets.GOOGLE_CREDENTIALS }}
- name: Debug script location
run: |
pwd
ls -la
- name: Run Extract Dataset Job on a VM and Launch Prediction Job on Beaker # We need all of these to become secrets
run: |
export GHCR_PAT=${{ secrets.GHCR_PAT_PULL_DOCKER_IMAGE }} && \
export DATASET_EXTRACT_COMMAND="python -m rslp.main forest_loss_driver extract_dataset" && \
export RSLP_PROJECT="forest_loss_driver" && \
bash .github/workflows/deploy_image_on_vm.sh \
--project-id ${{ secrets.GCP_PROJECT_ID }} \
--zone "us-west1-b" \
--machine-type "n2-standard-8" \
--docker-image ${{ steps.image-names.outputs.ghcr_image_name }} \
--command "$DATASET_EXTRACT_COMMAND" \
--user ${{ secrets.GCP_USER }} \
--ghcr-user ${{ secrets.GHCR_USER }} \
--service-account ${{ secrets.FOREST_LOSS_DRIVER_INFERENCE_SERVICE_ACCOUNT }} \
--delete no \
--beaker-token ${{ secrets.BEAKER_TOKEN }} \
--beaker-addr ${{ secrets.BEAKER_ADDR }} \
--beaker-username ${{ secrets.BEAKER_USERNAME }} \
--rslp-project $RSLP_PROJECT \
--workflow predict \
--rslp-prefix ${{ secrets.RSLP_PREFIX }} \
--gpu-count 1 \
--shared-memory "64Gib" \
--cluster ${{ secrets.BEAKER_CLUSTER_INFERENCE }} \
--priority "normal" \
--task-name "${RSLP_PROJECT}_inference_$(uuidgen | cut -c1-8)" \
--budget ${{ secrets.BEAKER_BUDGET }} \
--workspace ${{ secrets.BEAKER_WORKSPACE }}
# FOR clean up i will just run this vm with an instance schedule for like a day or something and have it log how long everything took somewhere
# I want to just launch predict as a single beaker job and have it run on a gpu