-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuiuc.py
83 lines (71 loc) · 1.7 KB
/
uiuc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Import
import numpy as np
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
import seaborn as sns
from graph import *
# from graph.utils import *
# from graph.config import *
# from graph.network import *
# from graph.temporal import *
# Config
# figure_config()
# Temporal network
# G = temporal_bt()
# G = temporal_bt_read(output=True)
# Static network
# S = static_bt()
# S = static_bt_read(output=True, stat=True)
# Time-ordered network
# T = ton_bt()
# T = ton_bt_full()
# T = ton_bt_read(output=True)
# ton_bt_analyze()
# G_new = ton_bt_to_temporal(save_times=False,
# save_nodes=False,
# save_network_file=False)
# Edge weight
# ew = edge_weight(version=3,
# omega=1,
# epsilon=1,
# gamma=0.0001,
# distance=0.1,
# alpha=0.5,
# save_weights=True,
# output_weights=False,
# plot_weights=False)
# ew = ew_read()
# HITS
# a, h = hits(
# version=3,
# sigma=0.85,
# max_iter=100,
# output=False,
# plot=True,
# save=True,
# )
# a, h = hits_read()
# hits_conditional()
# hitsc = hits_conditional_read(return_all=True)
# hits_analyze()
# hits_group()
# Node removal
# hr = hits_remove(
# epoch=24, # 24
# remove=0.5,
# step=100, # 10
# strategy_a='a',
# strategy_b='t',
# strategy_c='n', # 'r'
# strategy_d=1, # Score-based removal
# # actions=[0, 2],
# actions=[0, 2, 4, 5],
# output=True,
# plot_times=True,
# save_networks=True,
# return_graphs=True,
# return_scores=True,
# )
# Reachability
reachability(output=True, save=True)