-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlabel_image.py
86 lines (63 loc) · 2.53 KB
/
label_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import tensorflow as tf
import argparse
import os.path
import re
import sys
import tarfile
import PIL
def checkImage (imageToCheck):
image_path = imageToCheck
image_data = tf.gfile.FastGFile(image_path, 'rb').read()
label_lines = [line.rstrip() for line
in tf.gfile.GFile("./tf_files_galaxy/retrained_labels.txt")]
with tf.gfile.FastGFile("./tf_files_galaxy/retrained_graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
predictions = sess.run(softmax_tensor,{'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
if (human_string == "cars"):
scoreCars = score
print('%s (score = %.5f)' % (human_string, score))
if scoreCars > .9:
return True
else:
return False
<<<<<<< HEAD
def checkColumn (imageToCheck):
image_path = imageToCheck
image_data = tf.gfile.FastGFile(image_path, 'rb').read()
label_lines = [line.rstrip() for line
in tf.gfile.GFile("./tf_files_galaxy/retrained_labels.txt")]
with tf.gfile.FastGFile("./tf_files_galaxy/retrained_graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
predictions = sess.run(softmax_tensor, {'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
if (human_string == "cars"):
scoreCars = score
print('%s (score = %.5f)' % (human_string, score))
if scoreCars > .5:
return True
else:
return False
# print (checkImage ("./splitImage0/8.png"))
print (checkColumn ("./splitImage0/6Big.png"))
=======
# print (checkImage ("./splitImage0/3.png"))
>>>>>>> fdb7b9d144505de47cafd828a882035b1bab09e9