-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_results.py
142 lines (136 loc) · 5.39 KB
/
plot_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import time
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
# Global vars
LOG_PATH_DATE = '' # Set to the path of the model to plot result curves for
MA_SMOOTH = 1*.6 * 0.00025 # Note: If MA_TYPE = 'win', then window size is 1 / MA_SMOOTH
MA_TYPE = 'exp' # 'exp' (exponential) or 'win' (fix-sized window).
STEP_SIZE_DISPLAY = 25
SCALE_FACTOR = 1
X_AXIS_END = None
MIN_Y = 0
USE_SQRT = False # True --> sqrt(MSE) shown instead of MSE
if 0:
STAT_NAME = 'CE_loss'
MAX_Y = 0.1
elif 0:
STAT_NAME = 'mIoU'
MAX_Y = 1.0
elif 1:
STAT_NAME = ['mIoU', 'IoU_0', 'IoU_1']
#STAT_NAME = ['Recall', 'Recall_0', 'Recall_1', 'Recall_2', 'Recall_3', 'Recall_4', 'Recall_5']
#STAT_NAME = ['Precision', 'Precision_0', 'Precision_1', 'Precision_2', 'Precision_3', 'Precision_4', 'Precision_5']
#STAT_NAME = ['mIoU', 'IoU_0', 'IoU_1', 'IoU_2', 'IoU_3', 'IoU_4', 'IoU_5']
MAX_Y = 1.0
def _custom_ma(data, ma_smooth=MA_SMOOTH):
for idx, val in enumerate(data['values']):
if idx < 25:
data['mas_custom'][idx] = data['means'][idx]
else:
# Filter out any possible nan-entries in the data
i = 0
while np.isnan(data['values'][idx - i]):
i += 1
data['values'][idx] = data['values'][idx - i]
if MA_TYPE == 'exp':
data['mas_custom'][idx] = (1 - ma_smooth) * data['mas_custom'][idx - 1] + ma_smooth * data['values'][idx]
else:
# Fix-sized moving average window
win_size = min(idx, int(round(1 / MA_SMOOTH)))
data['mas_custom'][idx] = np.mean(data['values'][idx - win_size : idx + 1])
def _plot(datas, title='plot', xlabel='# training batches', ylabel=STAT_NAME,
start_it=0, max_x=None, max_y=None, min_y=None, force_axis=False, fig=None):
if fig is None:
show_plot = False
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(1, 2, 1)
else:
show_plot = True
ax = fig.add_subplot(1, 2, 2)
show_plot = False
max_nbr_data = 0
for data in datas:
max_nbr_data = max(max_nbr_data, len(data[0]['mas_custom']))
for data in datas:
x = data[0]['times']
y = SCALE_FACTOR*data[0]['mas_custom']
if USE_SQRT:
y = np.sqrt(y)
x = range(0,max_nbr_data)
y = np.concatenate([y, np.nan * np.ones(max_nbr_data - len(y))])
plt.plot(x[start_it:], y[start_it:])
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.grid(True)
plt.legend(STAT_NAME)
ax = plt.gca()
if USE_SQRT:
max_y = np.sqrt(max_y)
min_y = np.sqrt(min_y)
if max_x is None:
max_x = x[-1]
if force_axis:
ax.set_xlim([0, max_x])
if min_y is not None and max_y is not None:
ax.set_ylim([min_y, max_y])
elif min_y is not None:
ax.set_ylim([min_y, 100])
elif max_y is not None:
ax.set_ylim([0, max_y])
else:
ax.set_xlim([0, min(max_x, x[-1])])
if max_y is not None:
ax.set_ylim([0, min(max_y, max(np.max(y['means'][start_it:]), np.max(y['mas'][start_it:])))])
ax.set_aspect(max_x / (max_y - min_y))
if show_plot:
plt.show()
return fig
# Read data from log path
if not isinstance(LOG_PATH_DATE, list):
LOG_PATH_DATE = [LOG_PATH_DATE]
if not isinstance(STAT_NAME, list):
STAT_NAME = [STAT_NAME]
L2_losses_all = []
L2_losses_all_val = []
for stat_name in STAT_NAME:
L2_losses = {'means': 0, 'mas': 0, 'values': 0, 'times': 0}
L2_losses_val = {'means': 0, 'mas': 0, 'values': 0, 'times': 0}
min_x_range = np.inf
min_x_range_val = np.inf
for log_path_date in LOG_PATH_DATE:
log_path = os.path.join('../log', log_path_date, 'train_stats', stat_name + '.npz')
tmp = np.load(log_path)
for key in L2_losses:
min_x_range = min(min_x_range, len(tmp[key]))
if not isinstance(L2_losses[key], int) and len(L2_losses[key]) > min_x_range:
L2_losses[key] = L2_losses[key][:min_x_range]
L2_losses[key] += tmp[key][:min_x_range] / len(LOG_PATH_DATE)
log_path = os.path.join('../log', log_path_date, 'train_stats', stat_name + '_val.npz')
tmp = np.load(log_path)
for key in L2_losses_val:
min_x_range_val = min(min_x_range_val, len(tmp[key]))
if not isinstance(L2_losses_val[key], int) and len(L2_losses_val[key]) > min_x_range_val:
L2_losses_val[key] = L2_losses_val[key][:min_x_range_val]
if key == 'times':
L2_losses_val[key] += np.array([STEP_SIZE_DISPLAY * vv for vv in tmp[key]]) / len(LOG_PATH_DATE)
else:
L2_losses_val[key] += tmp[key][:min_x_range_val] / len(LOG_PATH_DATE)
# Create MA-smoothing of raw data
L2_losses['mas_custom'] = np.zeros_like(L2_losses['mas'])
L2_losses_val['mas_custom'] = np.zeros_like(L2_losses_val['mas'])
_custom_ma(L2_losses)
_custom_ma(L2_losses_val, ma_smooth=10*MA_SMOOTH)
# Append to list of all losses
L2_losses_all.append([L2_losses])
L2_losses_all_val.append([L2_losses_val])
# Plot results
fig_out = _plot(L2_losses_all, max_y=MAX_Y, min_y=MIN_Y, force_axis=True)
_plot(L2_losses_all_val, max_y=MAX_Y, min_y=MIN_Y, force_axis=True, fig=fig_out)
fig_out.savefig('result_plot.png')
plt.cla()
plt.clf()
plt.close('all')
print("Saved result plot!")