-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathvisualize.py
405 lines (315 loc) · 18.1 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
from __future__ import annotations
import time
import os
import ujson as json
import argparse
from typing import Dict, List, Mapping
import numpy as np
import open3d as o3d
from nuscenes.utils.data_classes import Box
from pyquaternion import Quaternion
import dataset_classes.kitti.mot_kitti as mot_kitti
from dataset_classes.mot_dataset import MOTDataset
from dataset_classes.mot_frame import MOTFrame
from dataset_classes.nuscenes.frame import MOTFrameNuScenes
from dataset_classes.nuscenes.sequence import MOTSequenceNuScenes
from dataset_classes.nuscenes.dataset import MOTDatasetNuScenes
from inputs.bbox import Bbox3d
from utils import utils_viz, io
from configs.params import NUSCENES_BEST_PARAMS
from configs.local_variables import SPLIT, NUSCENES_WORK_DIR, MOUNT_PATH
from transform.nuscenes import ROTATION_NEGATIVE_X_FULL
import transform.nuscenes as transform_nu
import inputs.utils as input_utils
VIS_HEIGHT = int(2 * 1200 / 3)
VIS_WIDTH = int(2 * 1920 / 3)
def refresh_visualizer(vis):
vis.poll_events()
vis.update_renderer()
def set_view_control(view_control):
# Press P to take a screen capture: screenshot + json with params
# view_control_params = vis.get_view_control().convert_to_pinhole_camera_parameters()
# print("view_control_params")
# print(view_control_params.extrinsic)
# print(view_control_params.intrinsic.get_focal_length())
# print(view_control_params.intrinsic.get_principal_point())
# print(view_control_params.intrinsic.width)
# print(view_control_params.intrinsic.height)
# print()
extrinsic = np.array([[ 0.83659957, -0.54698259, 0.03018616, -8.59162573],
[-0.28629649, -0.48353448, -0.8271812, 6.42272306],
[ 0.46704976, 0.68337724, -0.56112393, -0.71447277],
[ 0. , 0. , 0. , 1. ]])
focal = (887.6760388790497, 887.6760388790497)
principal_point = (959.5, 512.0)
width_height = (1920, 1025)
pinhole_params = o3d.camera.PinholeCameraParameters()
pinhole_params.extrinsic = extrinsic
# http://www.open3d.org/docs/0.14.1/python_api/open3d.camera.PinholeCameraIntrinsic.html?highlight=pinholecameraintrinsic#open3d.camera.PinholeCameraIntrinsic.set_intrinsics
pinhole_params.intrinsic.set_intrinsics(*width_height, *focal, *principal_point)
view_control.convert_from_pinhole_camera_parameters(pinhole_params)
def visualize_3d(dataset, params, mode: str, output_folder_prefix: str,
target_sequences=None, target_frame=0,
result_json: str = '', radius=0.05,
slowdown=None, save_img=False, world: bool = False, show_origin=False):
is_first_sequence = True
view_control_params = None
all_colors = utils_viz.generate_colors()
origin_frame_mesh = o3d.geometry.TriangleMesh.create_coordinate_frame(size=3, origin=[0, 0, 0])
# The x, y, z axis will be rendered as red, green, and blue arrows respectively
if result_json:
with open(result_json, 'r+') as f:
tracking_results = json.load(f)["results"]
if not target_sequences:
target_sequences = dataset.sequence_names(SPLIT)
for sequence_name in target_sequences:
print(f'Sequence {sequence_name}')
sequence = dataset.get_sequence(SPLIT, sequence_name)
sequence.mot.set_track_manager_params(params)
current_time_str = time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())
img_folder_path = os.path.join(
f"{output_folder_prefix}_{mode}_{SPLIT}_rad{radius}_{'CP' if ('/centerpoint_val/') in result_json else 'ours'}_{current_time_str}", sequence_name)
if save_img:
io.makedirs_if_new(img_folder_path)
if result_json:
with open(f"{img_folder_path}/{(result_json.split('/')[-1]).split('.json')[0]}.txt", "w") as file:
file.write(f"{result_json} was rendered here.")
file.close()
# Init 3D viz window
vis = o3d.visualization.Visualizer()
vis.create_window(width=VIS_WIDTH, height=VIS_HEIGHT)
all_frames = sequence.frame_names
assert len(all_frames) > 1
is_first_frame = True
sequence.load_ego_motion_transforms()
for frame_i, frame_name in enumerate(all_frames[target_frame:]):
frame_i += target_frame
if frame_i % 10 == 0:
print(f'Processing frame {frame_name}')
frame = sequence.get_frame(frame_name)
if mode == "mot":
geometries_to_add = vis_mot_predictions(frame, params, all_colors, world)
elif mode == "mot_submitted":
assert isinstance(sequence, MOTSequenceNuScenes)
geometries_to_add = vis_mot_predictions_submitted(frame, params, all_colors, tracking_results, radius, world)
elif mode == "det":
geometries_to_add = vis_detections_3d(frame, params, all_colors, world)
elif mode == "annotations":
geometries_to_add = vis_annotations_3d(frame, all_colors, world)
else:
raise Exception(f"Unknown visualization mode {mode}")
# Add geometries to the visualizer
vis.clear_geometries()
if show_origin:
vis.add_geometry(origin_frame_mesh)
for geometry in geometries_to_add:
if world:
geometry.translate(-frame.center_world_point.reshape(3, 1))
vis.add_geometry(geometry)
# misc. visualizer-related code
if not is_first_frame or not is_first_sequence: # apply saved view settings
vis.get_view_control().convert_from_pinhole_camera_parameters(view_control_params)
else:
set_view_control(vis.get_view_control())
vis.get_render_option().load_from_json("render_option.json")
is_first_frame = is_first_sequence = False
refresh_visualizer(vis)
if save_img:
frame_i_str = str(frame_i).zfill(6)
vis.capture_screen_image(f'{img_folder_path}/{frame_i_str}_{frame_name}.png', do_render=False)
vis.run()
view_control_params = vis.get_view_control().convert_to_pinhole_camera_parameters()
if slowdown is not None:
time.sleep(slowdown)
vis.destroy_window()
def vis_mot_predictions(frame: MOTFrame, params: Mapping, all_colors,
world: bool = False) -> List[o3d.geometry.Geometry3D]:
if isinstance(frame, mot_kitti.MOTFrameKITTI):
assert not world
if isinstance(frame, MOTFrameNuScenes):
assert world
points = frame.points(world)
predicted_instances = frame.perform_tracking(params)
predicted_bboxes: List[Bbox3d] = []
for instance in predicted_instances: # x, y, z, theta, l, w, h, ID, other info , confidence
if not instance.report_mot:
continue
bbox3d_coords = instance.coordinates_3d
assert bbox3d_coords is not None
ordered_bbo3d_coord = bbox3d_coords[[3, 4, 5, 6, 2, 1, 0]]
predicted_bboxes.append(Bbox3d(ordered_bbo3d_coord, instance.track_id,
seg_class_id=instance.class_id))
if isinstance(frame, MOTFrameNuScenes): # to enable get_indices_of_points_inside
points = transform_nu.nuscenes_to_kitti(points)
colors_np = np.full_like(points, np.array([0, 0, 0]))
geometries_to_add: List[o3d.geometry.Geometry3D] = []
for bbox in predicted_bboxes:
track_id_full = 1000 * bbox.seg_class_id + bbox.instance_id
color = all_colors[track_id_full % len(all_colors)]
indices_points_inside = bbox.get_indices_of_points_inside(points)
colors_np[indices_points_inside] = color
if isinstance(frame, MOTFrameNuScenes):
bbox.inverse_transform(ROTATION_NEGATIVE_X_FULL, 0)
geometries_to_add.append(utils_viz.create_line_bbox_from_vertices(bbox.corners_3d, color))
if isinstance(frame, MOTFrameNuScenes): # to enable get_indices_of_points_inside
points = transform_nu.kitti_to_nuscenes(points)
current_pcd = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(points))
current_pcd.colors = o3d.utility.Vector3dVector(colors_np)
geometries_to_add.append(current_pcd)
return geometries_to_add
def vis_mot_predictions_submitted(frame: MOTFrame, params: Mapping, all_colors, tracking_results, radius,
world: bool = False) -> List[o3d.geometry.Geometry3D]:
assert world
assert isinstance(frame, MOTFrameNuScenes)
points = frame.points(world)
colors_np = np.full_like(points, np.array([0, 0, 0]))
geometries_to_add: List[o3d.geometry.Geometry3D] = []
frame_results = tracking_results[frame.name]
print(f"frame {frame.name} has {len(frame_results)} results")
boxes_nu = [Box(result["translation"], result["size"], Quaternion(result["rotation"]), int(result["tracking_id"]),
name=result["tracking_name"], token=result["sample_token"]) for result in frame_results]
# bboxes_3d = [frame.bbox_3d_from_nu(box, box.label, world=True) for box in boxes_nu]
if isinstance(frame, MOTFrameNuScenes): # to enable get_indices_of_points_inside
points = transform_nu.nuscenes_to_kitti(points)
for bbox in boxes_nu:
bbox_label = bbox.label
color = all_colors[bbox_label % len(all_colors)]
# print(f"bbox.center {bbox.center}")
# print(f"bbox.wlh {bbox.wlh}")
# print(f"bbox.orientation.q {bbox.orientation.q}")
# det_info = tuple(np.concatenate((bbox.center, bbox.wlh, bbox.orientation.q)))
# color = all_colors[hash(det_info) % len(all_colors)]
# print(f"det_info: {det_info}, hash: {hash(det_info)}")
# bbox_internal = Bbox3d.from_nu_box_convert(bbox)
bbox_internal = frame.bbox_3d_from_nu(bbox, bbox_label, world=True)
indices_points_inside = bbox_internal.get_indices_of_points_inside(points)
colors_np[indices_points_inside] = color
geometries_to_add.append(*utils_viz.create_line_bbox_from_vertices(bbox.corners().T, color, radius))
if isinstance(frame, MOTFrameNuScenes): # to enable get_indices_of_points_inside
points = transform_nu.kitti_to_nuscenes(points)
current_pcd = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(points))
current_pcd.colors = o3d.utility.Vector3dVector(colors_np)
geometries_to_add.append(current_pcd)
return geometries_to_add
def vis_detections_3d(frame: MOTFrame, params: Mapping, all_colors,
world: bool = False) -> List[o3d.geometry.Geometry3D]:
frame.det_score_thresholds = params["det_scores"]
frame.seg_score_thresholds = params["seg_scores"]
points = frame.points(world)
bboxes_3d = frame.detections_3d(world)
if isinstance(frame, MOTFrameNuScenes): # to enable get_indices_of_points_inside
points = transform_nu.nuscenes_to_kitti(points)
geometries_to_add: List[o3d.geometry.Geometry3D] = []
colors_np = np.full_like(points, np.array([0, 0, 0]))
for bbox in bboxes_3d:
if bbox is None:
continue
color = all_colors[bbox.seg_class_id % len(all_colors)]
indices_points_inside = bbox.get_indices_of_points_inside(points)
colors_np[indices_points_inside] = color
if isinstance(frame, MOTFrameNuScenes):
bbox.inverse_transform(ROTATION_NEGATIVE_X_FULL, 0)
geometries_to_add.append(utils_viz.create_line_bbox_from_vertices(bbox.corners_3d, color))
if isinstance(frame, MOTFrameNuScenes):
points = transform_nu.kitti_to_nuscenes(points)
current_pcd = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(points))
current_pcd.colors = o3d.utility.Vector3dVector(colors_np)
geometries_to_add.append(current_pcd)
return geometries_to_add
def vis_annotations_3d(frame: MOTFrame, all_colors, world: bool = False) -> List[o3d.geometry.Geometry3D]:
points = frame.points(world)
if isinstance(frame, MOTFrameNuScenes): # to enable get_indices_of_points_inside
points = transform_nu.nuscenes_to_kitti(points)
colors_np = np.full_like(points, np.array([0, 0, 0]))
geometries_to_add: List[o3d.geometry.Geometry3D] = []
bboxes = frame.bbox_3d_annotations(world)
for bbox in bboxes:
if bbox is None:
continue
color = all_colors[bbox.seg_class_id % len(all_colors)]
indices_points_inside = bbox.get_indices_of_points_inside(points)
colors_np[indices_points_inside] = color
if isinstance(frame, MOTFrameNuScenes):
bbox.inverse_transform(ROTATION_NEGATIVE_X_FULL, 0)
geometries_to_add.append(utils_viz.create_line_bbox_from_vertices(bbox.corners_3d, color))
if isinstance(frame, MOTFrameNuScenes):
points = transform_nu.kitti_to_nuscenes(points)
current_pcd = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(points))
current_pcd.colors = o3d.utility.Vector3dVector(colors_np)
geometries_to_add.append(current_pcd)
return geometries_to_add
def visualize_tracking_results_in_2d(dataset: MOTDataset, params: Dict,
result_json: str, output_folder_prefix: str, target_sequences=None,
default_cam_only: bool = False, save_img: bool = False, render: bool = True, suffix: str = ""):
all_colors = utils_viz.generate_colors()
if not target_sequences:
target_sequences = dataset.sequence_names(SPLIT)
print(target_sequences)
current_time_str = time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())
if save_img:
img_folder_path = f"{output_folder_prefix}_{SPLIT}_{current_time_str}{suffix}"
img_folder_path = f"_{SPLIT}_{current_time_str}{suffix}"
io.makedirs_if_new(img_folder_path)
with open(result_json, 'r+') as f:
tracking_results = json.load(f)["results"]
fig = utils_viz.create_subplot_figure()
for sequence_name in target_sequences:
print(f'Sequence {sequence_name}')
sequence = dataset.get_sequence(SPLIT, sequence_name)
if save_img:
sequence_folder_path = os.path.join(img_folder_path, sequence_name)
io.makedirs_if_new(sequence_folder_path)
all_frames = sequence.frame_names
for frame_i, frame_name in enumerate(all_frames):
frame = sequence.get_frame(frame_name)
frame_i_str = str(frame_i).zfill(6)
frame.det_score_thresholds = params["det_scores"]
frame.seg_score_thresholds = params["seg_scores"]
frame_results = tracking_results[frame.name]
print(f"frame {frame_i_str}: {frame_name} has {len(frame_results)} results")
boxes_nu = [Box(result["translation"], result["size"], Quaternion(result["rotation"]), int(result["tracking_id"]),
name=result["tracking_name"], token=result["sample_token"]) for result in frame_results]
bboxes_3d = [frame.bbox_3d_from_nu(box, box.label, world=True) for box in boxes_nu]
track_dets_2d_multicam: Dict[str, List] = frame.bbox_2d_projections(bboxes_3d)
# print("boxes_nu", boxes_nu)
# print("bboxes_3d", bboxes_3d)
# print("track_dets_2d_multicam", track_dets_2d_multicam)
images = []
for cam in sequence.cameras:
if default_cam_only and cam != sequence.camera_default:
continue
img = frame.get_image_original_uint8(cam)
dets = track_dets_2d_multicam[cam]
for det in dets:
color = [c * 255 for c in all_colors[det.instance_id % len(all_colors)]]
utils_viz.draw_bbox(img, det.bbox, tuple(color), 2)
images.append(img)
path_to_save = os.path.join(sequence_folder_path, f"{frame_i_str}_{frame_name}.png") if save_img else None
utils_viz.show_images(fig, images, sequence.cameras, path_to_save, render=render)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Evaluate nuScenes tracking results.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('result_path', type=str, help='The submission as a JSON file.')
parser.add_argument('-suffix', type=str, help='Suffix for the output visualizer folder')
parser.add_argument('--default_cam_only', default=False, action='store_true')
args = parser.parse_args()
# o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Debug)
mot_dataset = MOTDatasetNuScenes(work_dir=NUSCENES_WORK_DIR,
det_source=input_utils.CENTER_POINT,
seg_source=input_utils.MMDETECTION_CASCADE_NUIMAGES,
version="v1.0-mini")
params_to_run = NUSCENES_BEST_PARAMS
target_sequences: List[str] = ["scene-0103"]
# mot_dataset = mot_kitti.MOTDatasetKITTI(work_dir=KITTI_WORK_DIR,
# det_source=input_utils.POINTGNN_T3,
# seg_source=input_utils.TRACKING_BEST)
# params_to_run = KITTI_BEST_PARAMS
# target_sequences: List[str] = ["0027"]
json_to_parse = os.path.join(MOUNT_PATH, args.result_path)
visualize_3d(mot_dataset, params_to_run, mode="mot_submitted", output_folder_prefix='output/polarmot', world=True,
target_sequences=target_sequences, target_frame=20, result_json=json_to_parse, radius=0.06, save_img=True)
# visualize_3d(mot_dataset, params_to_run, mode="det", output_folder_prefix='output/polarmot', world=False, target_sequences=target_sequences, save_img=True)
# visualize_3d(mot_dataset, params_to_run, mode="mot", output_folder_prefix='output/polarmot', world=True, target_sequences=target_sequences, save_img=True)
# visualize_3d(mot_dataset, params_to_run, mode="annotations", output_folder_prefix='output/polarmot', world=True, target_sequences=target_sequences, save_img=True)
# visualize_tracking_results_in_2d(mot_dataset, params_to_run, json_to_parse, output_folder_prefix='/output/polarmot',
# default_cam_only=args.default_cam_only, save_img=True, render=False, suffix=args.suffix)