-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathlinearsvm.m
67 lines (56 loc) · 1.62 KB
/
linearsvm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
function [model] = linearsvm(X, Y, C, dual)
% [model] = linearsvm(X, Y, C, dualparam);
% Build linear svm using liblinear package
% X: the instance X feature sparse matrix
% Y: the label Y each column is a label, the negative class could be -1 or 0
% C: the trade-off parameter of SVM
% dual: whether or not use primal or dual solver (optional)
%
% model: the constructed SVM classifier
% to obtain prediction score of test set X of n test instances
% prediction_score = X * model.W + repmat(model.bias, n, 1)
if nargin < 4
dual = 0;
end
param.alpha = C;
%C = param.alpha;
[n, T] = size(Y);
[n, d] = size(X);
% if issparse(Y)
% Y = full(Y);
% end
if ~issparse(X)
X = sparse(X);
end
%Y(Y==0)=-1;
if dual==0
paramstr = sprintf('-s 2 -c %f -B 1 -q', param.alpha)
else
paramstr = sprintf('-s 1 -c %f -B 1 -q', param.alpha)
end
%% ===PLEASE uncomment the following code if you use liblinear <1.5 ======
% if dual==0
% paramstr = sprintf('-s 2 -c %f', param.alpha)
% else
% paramstr = sprintf('-s 1 -c %f', param.alpha)
% end
%% =======================================================================
W = zeros(d,T);
bias = zeros(1,T);
for t=1:T
t
y = -1*ones(n, 1);
y(Y(:, t)==1)=1;
mod_ind = train(y, X, paramstr);
% fprintf('the size of vector w is %d: %d\n', length(mod_ind.w), d);
W(:, t) = mod_ind.w(1:d);
bias(t) = mod_ind.w(end);
if mod_ind.Label(1)==-1
W(:,t)= -W(:,t);
bias(t) = -bias(t);
end
end
model.W = W;
model.bias = bias;
model.method = 'svm';
model.param = param;